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Abstract
Despite the accepted fact that control logic deployed in
future and existing buildings through building automation
systems constitutes a key factor for increasing their en-
ergy efficiency, the support for modelling and simulation
of these in current state-of-the-art simulation tools and li-
braries is rather limited. In particular a gap exists for mod-
elling and simulation of standardised control functions. In
this work we present an approach for modelling standard-
ised control logic using Modelica. We evaluated the inter-
operability of the modelling approach by simulating a test
case of an automation solution controlling the sunshade of
a room and by reimplementing a state-based control for an
air handling unit reusing models from two Annex60 com-
pliant libraries.
Keywords: Building Automation, Control Function,
VDI 3813, VDI 3814, ISO 16484

1 Introduction
The three pillars which influence the energy demand in
buildings are a sophisticated façade, energy efficient tech-
nical equipment and the actual operation by means of con-
trol through a Building Automation System (BAS). The
use of BAS is stipulated by relevant standards, e.g. EN
15232:2013. However, benefits in terms of reduced en-
ergy demand from the façade and/or technical equipment
can easily be spoilt by operating a building using a poorly
designed, misconfigured or malfunctioning BAS.

The operation of a building is a complex control task in-
volving multiple sensors, actuators and control algorithms
spanning different scales in terms of time and space; the
sum of input and outputs can easily reach ten thousand.
Hence, the design, (continuous-) commissioning and op-
eration of such a complex system is a challenging, time-
and cost-intensive task.

A possible solution for managing this complexity dur-
ing BAS design and operation is the use of a Model-Based
Design (MBD) methods, where all components of a build-
ing are modelled and simulated to design and test the con-
trol logic of a BAS prior to its deployment in a build-
ing. Also, comparison of the simulation model and the
real-world implementation provides a helpful insight in
detecting anomalies during operation (Venkatasubrama-

nian et al., 2003). The model and adjacent simulation
infrastructure can further be used for Model-in-the-loop
and Software-in-the-Loop (SIL) evaluation, e.g. for au-
tomotive applications (Chrisofakis et al., 2011) and later
in Hardware-in-the-loop simulation, e.g. for circulating
pump control (Schneider et al., 2015).

Models to describe the behaviour of control logic and
algorithms are part of the Modelica Standard Library
(MSL) since its very beginnings. A research effort from
the International Energy Agency’s Energy Buildings and
Communities Programme (IEA EBC) develops as one out-
come a core library for Building Performance Simulation
(BPS) using Modelica. A set of four libraries, all suit-
able for MBD within the buildings domain, Buildings
(Wetter et al., 2014), AixLib (Constantin et al., 2014)
BuildingSystems (Nytsch-Geusen et al., 2013) and
IDEAS (Baetens et al., 2012) now share one common core
library Annex60 (Wetter et al., 2015). A special library
NCLib for the simulation of automation systems is pre-
sented by Liu (2013), however its focus is on modelling
automation system devices rather than the control logic
involved. A library specifically designed to model and
simulate control functions from industrial automation in
Modelica without specific control functions for standard-
ised room or building automation is presented by Bonvini
and Leva (2012).

Several national and international standards exist to
support the design process of BAS, e.g. VDI 3813-2:2011;
VDI 3814-6:2009; ISO 16484:2011 by providing a set of
commonly utilised control functions which can be reused
to compose an automation solution for room and building
automation. The number of defined control functionalities
and the detail of the descriptions varies between standards.
Having these pieces of control logic readily available in a
simulation environment to compose by drag-and-drop a
control strategy for a room or a piece of equipment in a
building can result in significant benefits in terms of time
required for the design and quality of the resulting con-
trol logic. Automation engineers may design and test their
control solution prior to the deployment in a real building
by coupling its simulation to models of rooms, buildings
and equipment. Also in later stages of the life-cycle the
outcome of the simulation model can be compared with
actual monitoring data for fault detection purposes.
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However, to the best of our knowledge, no library ex-
ists for the modelling and simulation of standardised con-
trol functions (see comparison in Table 1). The contribu-
tion aspect of this work resides in presenting Modelica-
based modelling approach for standardised control func-
tions from BAS.

We present a model library BuildingControlLib
which provides a basis to implement standardised control
functions in a streamlined manner. For the implementa-
tion of block oriented control functions from standards we
recommend representing the structure by class diagrams
and the actual control behaviour for state-based control
logic using activity diagrams, as defined by the Unified
Modeling Language (UML) (Object Management Group,
2015). The design of the models and library is such that
the compatibility to the MSL as well as libraries from An-
nex60 effort is ensured. The graphical visualisation in-
cluded in the models is designed such that representations
composed to the standards and control solutions may be
compiled in a ease-to-use manner from interested BAS
practitioners.

As a beginning we include models of control functions
compliant to the standards VDI 3813-2:2011 and VDI
3814-6:2009. Due to partly ambiguous textual descrip-
tions for control behaviour in standards the models com-
pliant to VDI 3813-2:2011 are designed such that stan-
dardised interfaces and actual control functionality are
separated. This offers the benefit that the actual function-
ality can be easily exchanged with own code or implemen-
tations, possibly using the Functional Mockup Interface
(FMI) standard (Blochwitz et al., 2012). To support users
when composing own control solutions by drag and drop-
ping control functions from the library we include the no-
tion of connector semantics (Dibowski et al., 2010) to help
users composing only semantically correct automation so-
lutions; for example it is not possible to connect an indoor
air temperature output and an outdoor air temperature in-
put. To represent state-based control we include models
to simulate state-based control descriptions in BAS as de-
fined in VDI 3814-6:2009

In the remainder of this work we describe the under-
lying design principles when modelling standardised con-
trol functions in section 2. We then demonstrate the us-
ability of the approach by simulating two test cases where
the automation models are coupled to physical room and
equipment models from Annex60 compliant libraries in
section 3.

2 Implementation
The models are included in a library termed
BuildingControlLib. Its overall structure is
depicted in Figure 1 from a screenshot in Dymola 2015
FD01 (Dymola, 2015) which we use for implementation.
The design of the overall structure follows the best
practices and conventions documented in the MSL,
e.g. naming convention of models and classes, package

structure with a user’s guide, ready-to-simulate examples,
components, interfaces and types.

Figure 1. Overall structure of model library.

At the top level we include the mandatory pack-
ages for documentation and examples and three packages
VDI3813, VDI3814 and Nonstandardized. The
number of packages mentioned is not meant to be exhaus-
tive. Instead the implementation undertaken so far may
serve as a blue print for implementing control functions
from further standards, e.g. ISO 16484:2011.

The first package contains models for the simulation
of room automation functions from VDI 3813-2:2011;
the second contains models for the simulation of state
graphs as defined in VDI 3814-6:2009; and the third pack-
age gathers models for common non-standardised control
functions. In some cases, e.g. a schedule, we reuse func-
tionality already implemented for non-standardised appli-
cations.

Auxiliary models used in example models are kept in
the Utilities package.

2.1 Room Automation According to VDI 3813
Beside the general best practices for Modelica libraries,
e.g. package structure, the following requirements have
been defined to enable seamless use of the library:

1. Modular design such that control functionality is en-
capsulated and may be exchanged as needed;
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Table 1. Overview of the reviewed open-source libraries. X - criteria fulfilled and - not fulfilled. (1) - Annex60 (Wetter et al.,
2015), (2) - Buildings (Wetter et al., 2014), (3) - AixLib (Constantin et al., 2014), (4) - BuildingSystems (Nytsch-Geusen
et al., 2013), (5) - IDEAS (Baetens et al., 2012), (6) NCLib (Liu, 2013), (7) - IndustrialAutomationSystems (Bonvini
and Leva, 2012) and (8) - this work.

Criteria (1) (2) (3) (4) (5) (6) (7) (8)

Models for
... control X X X X X - X X
... room automation (X) (X) (X) (X) (X) - - X
... building automation (BA) (X) (X) (X) (X) (X) - - X
... standardised BA - - - - - - - X
Semantic connectors - - - - - - - X
Based on Annex60 obsolete X X X X - - -
Active development X X X X X - X X

2. Automated compatibility checking of control func-
tions as proposed by Dibowski et al. (2010);

3. Graphical representation as defined within the stan-
dard.

The first requirement results from prevalent heterogene-
ity in actual implementations of control behaviour in stan-
dards. Existing standards do provide textual descriptions
on how the actual behaviour should be, however this de-
scriptions leave room for interpretation. Thus functionali-
ties might comply to standards but have minor differences.
To ensure the seamless exchange of functionality, possi-
bly from non-Modelica implementations, we separate the
definition of interfaces (function) from its functionality as
described in detail in the next sections.

The second requirement is motivated by an approach
reported by Dibowski et al. (2010). The methodology de-
scribed allows to automatically derive interoperable au-
tomation solutions for room automation. The approach
relies on the formal specification of input and output vari-
ables of control functions, by annotating exchange vari-
ables with information on e.g. its unit, quantity, etc. The
approach is exemplified for control functions for room au-
tomation (Dibowski, 2013). As Modelica provides mecha-
nisms for consistency checking on exchange variables the
requirement should be fulfilled by implementation to sup-
port library users when implementing own solutions.

Finally to allow easy composition of control solutions
also by interested practitioners the visual appearance of
the modelled control functions should align with the defi-
nitions in the standards. Thus allowing the easy reuse and
composition of automation solutions.
Structure of VDI3813 Package

The top-level structure of VDI3813 package is illus-
trated in Figure 1. It follows the taxonomy established
within the standard which classifies available control func-
tions into:

• SensorFunctions - which convert physical sig-
nals into automation signals;

• ActuatorFunctions - which receive a setpoint
to generate a physical control command for a motor;

• OperatorAndDisplayFunctions - which ex-
change status information to occupants and give
them the ability to send manual commands;

• ApplicationFunctions - which provide the
actual automation functionality by processing sensor
or operator functions and transmit new setpoints and
commands to actuators;

• Macrofunctions - which provide an interface
to compose reusable macro-functions from low-level
control functions.

The standard also defines supervisory control functions
such as data storage and external messaging which we
found to be out of scope for dynamic simulation of con-
trol behaviour and coupling to models of physical pro-
cesses. The category Common I/O functions with two con-
trol functions for interfacing the automation system to ex-
ternal applications is not explicitly modelled.

To ensure computationally efficiency we implement the
control functions as Modelica block as suggested by Liu
(2013). Whenever possible we reuse models from MSL.
Encapsulating Functionality

The actual functionality in the standard is defined us-
ing textual descriptions. This leaves a wide range for in-
terpreting and implementing this descriptions; hence, im-
plementations of control functions vary between different
manufacturers of devices for room automation.

To represent and model this heterogeneity as defined in
the first requirement (see section 2.1) the following de-
sign principle is applied within this library. We introduce
a block Function as a base class for defining the in-
terface to other functions. Each Function has a as-
sociated block Functionality (see Figure 2) which
serves as a template to implement the respective intended
functionality. This allows for easy maintainability and
quick exchange of functionality within the library, e.g.
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a manufacturer would like to place his own functional-
ity within the model, potentially using the FMI standard
(Blochwitz et al., 2012). By leaving the respective block
Function unaltered its interoperability with other func-
tion blocks is ensured and changes are only applied within
Functionality.

«block»

PartialFunction

«block»

PartialFunctionality

«block»

Functionality

«block»

Function

«connector»

Input

«connector»

Output

Implement
semantic data
types«connector»

PartialInput

«connector»

PartialOutput

Provide
graphical
layout

«connector»

PhysicalInput

«connector»

PhysicalOutput

«connector»

PartialPhysicalInput

«connector»

PartialPhysicalOutput

Figure 2. Class diagram in UML describing the modelling prin-
ciple of encapsulating functionality.

To ensure uniform and complaint graphical layout of
the control functions it is once defined in the partial block
PartialFunction using Modelica annotations.

To implement a control function a block is created
which inherits from PartialFunction. Parameters
and connectors must be added. In the corresponding func-
tionality block the actual control logic is implemented in
what ever way is preferred, e.g. reusing models from other
libraries.

For all implemented control functions we provide a
default functionality which may be adapted to the users
needs or exchanged if required. However, regarding the
mentioned space for interpretation arising from textual de-
scriptions in the standard these are not meant to be nor-
mative. To ensure understandability we provide UML ac-
tivity diagrams for describing the respective functionality
as implemented and include it into the documentation of
each model. As an example we present the UML activity
diagram of AutomaticThermalControl in Figure 3.
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Figure 3. UML activity diagram of a functionality
AutomaticThermalControl as described in VDI 3813-
2:2011.

Semantic Connectors
To solve the task of automating the design process of

room automation systems recently the semantically un-
ambiguous specification of function profiles for room au-
tomation is introduced (Dibowski et al., 2010; Dibowski,
2013). This approach allows for the automated generation
of room automation profiles, i.e. a set of control func-
tions from a standard, automatically from initially defined
requirements. The approach requires to formally specify
automation devices including their functional profiles, i.e.
the control functions implemented on a devices. More-
over to automatically bind variables of different control
functions detailed semantics of the input and output vari-
ables are specified. The approach has been successfully
demonstrate by modelling functions and devices comply-
ing to the VDI 3813-2:2011 standard.

To support library users in the design of a room automa-
tion solution using the library we integrate the notion of
semantics in the design of connector classes. We define
for every variable type in the standard a separate connec-
tor class. We specify the unit, quantity, basic type (Real,
Boolean, Integer, ...) and direction of information
flow (input/output) in the connector definition and a
corresponding type definition using the known Modelica
language elements for this. As emphasised by Dibowski
et al. (2010); Dibowski (2013) these specifications are not
enough to differentiate among input and output variables.
As Modelica does not provide additional ways to specify
variable semantics we introduce a naming convention for
exchange variables specified in the connector classes. The
naming convention has two parts: (1) Each variable starts
with one of the strings value, status, command and set-
point, a classification recommended by Dibowski (2013);

Modelling and Simulation of Standardised Control Functions from Building Automation

212 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132209



(2) in the second part we added additional strings specify-
ing additional semantics e.g. to differentiate between an
indoor and an outdoor air temperature.

For example for the exchange variable describing
the outdoor illuminance abbreviated in the standard as
H_OUT we specify a connector ValueIlluminanceOut-
door:

Listing 1. Source code of connector ValueIlluminance
OutdoorInput.

connector ValueIlluminanceOutdoorInput
extends Partial.PartialInput;

input
BuildingControlLib.[ ... ].

ValueIlluminanceOutdoor
valueIlluminanceOutdoor; // Specified

variable name
end ValueIlluminanceOutdoorInput;

The semantic correctness when composing automation
solutions from drag and dropping control function blocks
in e.g. a macro is ensured by the ability of a Modelica
simulation environment to check connector compatibility
in terms of unit, quantity, basic type, input/output and the
name of the variable. Hence, a user can only connect
different control functions if input and output connectors
match. To ensure compatibility with models which imple-
ment connectors using the MSL interfaces, converter mod-
els are provided in the Sources and Sensors pack-
ages.

2.2 State Graph According to VDI 3814
Control logic for the control of Heating Ventilation and
Air-Conditioning (HVAC) often follows a state-centric be-
haviour. Multiple descriptions exist for modelling this be-
haviour originally described by Harel (1987). The stan-
dard VDI 3814-6:2009 defines the concept of a State
Graph to provide a graphical representation of state-
centric control behaviour in BAS.

In the package VDI3814 we provide models to com-
pose by drag-and-drop a State Graph. The graphical
layout of the models fits the definitions in the standard
(see Figure 4). For implementing we use models from
Modelica.StateGraph package from MSL.

An example of the modelling capabilities of the pack-
age is displayed in Figure 4 where the control of a generic
air handling unit is modelled with control states off, cool-
ing, heating or frost protection. A specific characteristic
of VDI 3814 State Graphs is that the explicit concept of
a transition does not exist. A new state is active when a
Boolean expression is evaluated as true. However transi-
tion conditions are included into a state. This definition is
modelled by including an array of transitions and a state
into one model. This allows to display the designed state
graphs as defined in the standard while reusing the models
from Modelica.StateGraph package. Also in the
standard it is possible to put return objects symbolised by
a circle around a number of the targeted state. This can
also be modelled and when removing the graphical anno-

0

off

1

cooling

2

heating

and1

and&

or1

or>1

booleanStep

10

booleanStep1

10

switchON

20

switchON1

30

3

freezeProtect

switchOFF

30

stateGraphRoot

root

0

switchON2

40

0

Figure 4. Ready to simulate model of a state graph from pack-
age VDI3814.

tations of the connect statements it is possible to derive a
graphical layout which is very similar to the one used in
the standard.

Additionally we reused blocks from MSL to model log-
ical conjunction and logical disjunction as required in the
standard.

3 Results from Test Cases
To evaluate the performance of the implemented control
library and to examine its interoperability to existing Mod-
elica libraries in the domain, we present results from two
test cases implemented for demonstration purposes. In the
first test case we implement an automation solution of a
sunshade in a room using control function models from
the package VDI3813 where we reuse a room model in-
cluded in the AixLib-library (Constantin et al., 2014). In
the second example we re-implement the state-based con-
trol of an Air Handling Unit from Buildings-library
(Wetter et al., 2014) using the models provided in the
VDI3814 package.

3.1 Room automation according to VDI 3813
Most room automation control functions focus on main-
taining acceptable indoor comfort conditions for occu-
pants while minimising the energy demand required to
provide these comfort conditions to the occupant.

In Figure 5 the scheme of an automation solution for
a room with a sunshade is illustrated. It is composed of
control functions from VDI 3813-2:2011 which are mod-
elled within the library presented in this work. As out-
lined above, the standard distinguishes between: sensor
functions; actuator functions; operator and display func-
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tions and application functions. Disconnected inputs in
the simulation of this test case have been fixed to reason-
able constants for keeping results easy to understand.

The overall functionality intended to be realised here
automatically limits or increases the amount of solar
heat gains of a room either by deploying or elevat-
ing a sunshade, respectively. It is implemented as a
macro function (VDI 3813-2:2011) using the applica-
tion functions OccupancyEvaluation, Priority-
Control, AutomaticThermalControl and Set-
pointCalculation. The connection to the physical
inputs required by these functions is realised using the
control functions PresenceDetection (Check with a
sensor if room is occupied), WindowMonitoring (Sen-
sor function to check if window is open), Brightness-
MeasurementOutdoor (Determine outdoor bright-
ness), AirTemperatureMeasurementRoom (Deter-
mine room air temperature) and AirTemperature-
MeasurementOutdoor (Determine outdoor air tem-
perature). A user may adjust the current temperature set-
point via the AdjustTemperatureSetpoint func-
tion. The outcome of the automation solution affects the
actual (real or virtual) sunshade by using the function
sunshadeActuator.
AutomaticThermalControl is only active if the

room is unoccupied and the outdoor illuminance levels are
higher than a threshold. Then, dependent on the compari-
son of current setpoint of the room and the measured room
temperature, the sunshade is either deployed or elevated.

Between the control output of AutomaticTher-
malControl and its actual deployment via the Act-
uateSunshade control function finally, i.e. Prior-
ityControl checks if no higher prioritised signal is
found or the window is open. If the signal of Auto-
maticThermalControl is of current highest priority,
it is then forwarded to the SunshadeActuator control
function and deployed on the actual sunshade.

We implemented the described room automation so-
lution using models from the previously described li-
brary. We couple it to a model which captures the phys-
ical behaviour of a room which we adapted from the
model ASHRAE140.Case900FF from Constantin et al.
(2014). The boundary conditions (weather, internal gains,
etc.) remained unchanged. We adapted the ventilation
schedule to 30 min once every day and introduced a con-
stant heat flow rate of 500 W to heat the room in order
to limit the outcome of these disturbances to the sunshade
control on the automation solution. Also we modified the
model of the south facing wall to contain a window with
a sunshade which may be deployed from outside via a
Boolean connector. We calculate the value of the outdoor
illuminance assuming a constant factor of 2.49 between
the value of irradation on a horizontal surface provided by
the model radOnTiltedSurf_Perez[5].

We simulated the coupled room and automation model
for the first day in the weather file. We chose boundary
conditions such that no presence is detected and no au-

tomatic or manual set point changes are applied. Hence
the automatic control is active only when illuminance
levels are sufficient. Results of the simulation are pre-
sented in Figure 6. Presented therein are the input sig-
nals affecting the AutomaticThermalControl con-
trol function, i.e. in the upper third the outdoor illumi-
nance H which is compared within the control function
with a threshold PH . If the illuminance is too low, no
control action happens. In the mid part the Boolean ex-
pressions indicating if AutomaticThermalControl
is operating in heating yhea or cooling mode ycoo and a sig-
nal telling the sunshade to be deployed or not are plotted
(usun). In the lowest subplot in Figure 6 the outdoor Toa
and indoor air temperature Tra are given and their respec-
tive heating (Thea,s) and cooling (Tcoo,s) set point. Also the
air exchange rate AER is given, representing the ventila-
tion scheme applied.

Given the described boundary conditions the control
functionality allows to keep the room temperature within
the bounds set by the heating and cooling set points, Thea,s
and Tcoo,s respectively. Before ventilating (time < 43200 s)
the sunshade is deployed several times when the control
switches to cooling mode, triggered by the actual room
temperature reaching the upper temperature set point at
24 degrees Celsius. The sharp decline during ventilation
results in a period where the heating mode is active and
the sunshade is elevated.

When the temperature recovers after ventilation with
outdoor air the cooling mode is active until the automatic
control enters the inactive mode when illuminance levels
fall below the threshold specified (PH).

3.2 Control of an Air Handling Unit via
VDI 3814 compliant State Graph

To evaluate the models implemented in the pack-
age VDI3814 we re-implement the model Mode-
Selector from the Buildings-library (Wetter
et al., 2014). The model is used in the example
VAVReheat.ClosedLoop to control a model of an
Air Handling Unit which supplies conditioned air to a
thermal zone. It encompasses six states representing the
behaviour of the system (initial, unoccupied off, morning
pre-cooling, morning warm-up, unoccupied night set back
and occupied).

We simulate VAVReheat.ClosedLoop with the
provided model and with the same control logic imple-
mented using models from VDI3814-package. We use a
Dymola 2015 FD01, 64bit with the following simulation
settings:

• start time: 0 s, end time: 172800 s;

• solver: Esdirk23a - order 3 stiff;

• interval length: 600 s; Tolerance: 1e-6.

We compare the results of the two simulations by cal-
culating the R squared value and the Mean Absolute Per-
centage Error (MAPE) between the respective results. The
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Figure 5. Scheme of the control functions utilised in the simulated room automation test case.

results are summarised in Table 2. The results show a
high agreement of the two simulations reflecting the sim-
ilar behaviour. Some discrepancies can be observed on
the compared simulated data which can be explained from
errors resulting from interpolating these values. An error
of 0.192% for the control mode exists as a negligible de-
viation between the control mode signals of both simula-
tion was identified; this originates from the waiting times
which at some point in the state graph network need to be
introduced. For the VDI3814 case with integrating transi-
tions and states in one model, a fixed delay is introduced to
avoid the termination of the simulation when initialising.

Table 2. Results from comparing the simulation of
VAVReheat.ClosedLoop with the original model from
Buildings library (Wetter et al., 2014) and this work. MAPE
- Mean Absolute Percentage Error.

Variable R2 MAPE in %

TOut .999 6.816e-6
controlMode .970 0.192
occupied 1.00 0.000
TRooMin 0.999 6.475e-4
TRooAve 0.999 6.157e-4
TRooSetCoo 0.997 20.24e-4
TRooSetHea 0.997 19.48e-4

4 Discussion
From the results presented in this work the Modelica mod-
elling language is found to be suitable for the proposed

modelling and simulation of standardised control func-
tions.

However, some limitations have been identified when
implementing the notion of semantic connectors. We
found the ability of the Modelica language to support
checking of the consistency of connector variables accord-
ing to units, quantity and the name of the variable to be
a helpful feature. However, when attempting to include
detailed semantics of connector variables the only pos-
sibility is to introduce a naming convention for the ex-
change variables which is cumbersome to maintain and
prone to errors. It may be of interest to extend the Mod-
elica language in future releases in this direction to eval-
uate the types of a connector variable (not only the basic
type, e.g. Real, Boolean, Integer, etc.) allowing to
define a taxonomy of types instead of a naming conven-
tion. An approach known from the simulation of cyber-
physical systems embedded in the Ptolemy II framework
offers a possibility to include consistency checking (Le-
ung et al., 2009) of units based on ontology. The concept
of expandable connector is not found to be suit-
able in this context as a variable name might occur sev-
eral times in one automation solution but must not be con-
nected to each of its occurrences.

Standards are evaluated and revised on a regular basis,
thus a regular revision and maintenance of the library is
required. We are confident that the presented underlying
design principles of the modelling approach remain rel-
evant and applicable to future and upcoming versions of
standards.

Most standards provide textual descriptions of the func-
tionality of a control function which often is ambiguous
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and is prone for different interpretation. When imple-
menting the models we use established documentation
measures, namely UML class and activity diagrams to
document our implementation. Having well-documented,
commonly-agreed on simulation models of the control
functions available as a reference implementation may
help the wide-spread and further adoption of BAS in the
buildings domain.

When modelling buildings, technical equipment and
components and control logic of BAS the resulting hy-
brid system involves continuous and discrete event dy-
namics (Fritzson, 2014). In particular modelled discrete
behaviour in control logic, e.g. a transition from one state
to another if the condition tRoom > 22◦C is evaluated to
true, triggers events involving state variables which need
to be handled by the numerical solver. A large number of
these events leads to a significant slow down of simulation
speed when simulating the mentioned systems.

The Modelica modelling language provides built-in
functionalities to efficiently handle events and should be
applied when ever possible. Discrete behaviour with re-
spect to time, e.g. sampling, can be efficiently handled
using discrete variables or clocks introduced in Modelica
3.3 language specification (Otter et al., 2012).

The generation of state events can be prevented
from using noEvent(expression) in case it is
known that the respective expression is continuous
and smooth(p,expression) if not known.

The use of clocked variables and expressions seems to
be a promising path for efficient implementation of con-
trol behaviour in Modelica. In particular the ability to
transfer clocked control systems from its Modelica im-
plementation to clocked control hardware is a huge ben-
efit. However, its effect on computational efficiency when
simulating needs to be investigated as in the buildings do-
main distinguishing models with discrete and continuous
dynamics is sometimes difficult; For example the discrete
behaviour of a user opening a window when some tem-
perature threshold is crossed may be modelled within the
buildings model, thus discrete and continuous models are
mixed.

5 Conclusion
In this work we present a modelling approach to model
and simulate standardised control functions from build-
ing automation in Modelica. We exemplify this by mod-
elling block like control functions from VDI 3813-2:2011
and state-centric control from VDI 3814-6:2009. In par-
ticular this includes models for sensor, actuator, operator-
and display, application control functions and a template
to model macro functions from VDI 3813-2:2011 and set
of models to compose state graphs as specified in VDI
3814-6:2009 built on top of StateGraph package from
Modelica Standard Library.

The usability of the models is demonstrated in two ex-
ample applications linking a room automation solution

to room models from AixLib-library (Constantin et al.,
2014) and a state graph to control an air handling unit
model from Buildings-library (Wetter et al., 2014).

The models presented, along with the models existing
for building elements and equipment, allow to investigate
the interaction and influences of an automation solution on
the buildings behaviour in an integrated manner. Through
the respective feedback from user models and also the in-
teraction of user and automation solution as it is imple-
mented in a real BAS is possible.

The total number of models and standards described in-
cluded here is still limited. In future we plan to include
more standardised, e.g. from ISO 16484:2011, and non-
standardised control functions, e.g. for HVAC control.

We introduce the notion of a semantic connector which
allows the library user to only connect control functions
which are supposed to be connected, following the idea
presented by Dibowski et al. (2010). The approach relies
on a naming convention, despite the ability of consistency
checking of Modelica modelling language for quantities
and units. Future research may expand on this allowing
to define variable semantics more freely as previously dis-
cussed and implemented by Leung et al. (2009).

In future we intend to investigate the potential benefits
of using clocked variables in the definition of BAS control
behaviour and standardised control functions for efficient
simulation of the resulting hybrid systems.

Our intention is to stream line this effort with develop-
ments connected to the Annex60 effort and stipulate col-
laboration and reuse by open-sourcing the described mod-
els. For this purpose we intend to integrate the models
within an open library. Through doing this we hope that
this effort acts as a catalyst for implementing and provid-
ing control logic from BAS for building control in a com-
prehensive, well-documented and efficiently implemented
way.
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