
Simulating a Variable-structure Model of an Electric Vehicle for
Battery Life Estimation Using Modelica/Dymola and Python

Moritz Stüber1

1University of Applied Sciences Vorarlberg, Austria

Abstract
A variable-structure model (VSM) of a battery electric ve-
hicle used for simulating the ageing of the battery pack is
presented. The operating principle of the software used to
simulate the models is described and a brief summary of
the state of science and technology regarding the simula-
tion of VSMs is given. By comparing the performance of
the VSM to a conventional model, it is found that the sim-
ulation time does not necessarily decrease when replacing
a model with a variable-structure version. However, the
VSM has advantages regarding the handling of the result
files and the possibility to analyse the results.
Keywords: Variable-structure Model, VSM, Modelica,
Dymola, Simulation

1 Introduction
In recent years, the use of electrified or electric power
trains in passenger cars has gained renewed research in-
terest. However, most currently available battery electric
vehicles (BEVs) have a rather low driving range caused
by the low energy density of the battery pack in compari-
son to conventional fuel. The battery pack is not only the
single most expensive part of the BEV, but also subject to
significant degradation. Consequently, car manufacturers
have to simulate the state of health (SOH) of the battery
for two main reasons: on the one hand, it has to be made
sure that a vehicle still meets the requirements when the
battery has aged. On the other hand, it is necessary to esti-
mate possible warranty costs caused by battery packs that
reach the end of their life ahead of time.

With age, the capacity of the battery decreases and
the impedance increases. Since this affects the electrical
quantities within the vehicle, there should be no separa-
tion between the model used for simulating the driving be-
haviour and the ageing model. Instead, the model should
combine electric, mechanical and thermal models and thus
be capable of calculating feedback effects. Due to the fact
that the battery life has to be simulated for 8 to 15 years,
simulating this complex model takes a substantial amount
of time. Therefore, a speed-up of the simulation is desir-
able.

Vehicles are idle for the majority of their life. During
this time, the complexity of the model used for simula-
tion can be much lower than during driving. Implement-
ing this change in the level of detail of the model leads to

a so-called variable-structure model (VSM). Simulating a
VSM is potentially faster and/or more accurate than a con-
ventional simulation, but VSMs are not yet supported by
commonly used modeling languages and simulation envi-
ronments.

In this paper, the results of investigating the question
“Does the simulation time of the ageing process of a bat-
tery used in electric vehicles decrease if the system is
systematically modeled as a variable-structure model?”
(Stüber 2016) are presented.

In order to answer this question, four steps were taken.
First, a conventional model capable of estimating the bat-
tery life of a BEV was assembled using Modelica/Dymola.
Then, a variable-structure version of this model was im-
plemented and a software capable of simulating the VSM
using Dymola’s Python interface was written. Last, a se-
ries of simulations was performed in order to investigate
the influence of the model and solver settings on the time
needed to execute the simulation.

In the next section, a brief introduction to the modeling
and simulation of variable-structure models is given.

2 Variable-structure Models
In the context of modeling and simulation, variable-
structure models are models that consist of several sets
of equations describing the same physical system. Each
set of equations is called a “mode” of the model; exactly
one mode is active at all times during the simulation. The
changes between the modes are denoted “transitions”. For
each mode, the transitions define which mode becomes ac-
tive next, the condition ci for changing and information i j
on how to initialize the next mode (Mehlhase 2015, chap-
ter 3.2)—compare Figure 1.

A B C

cA ⇒ iB

iA ⇐ cB1

init

cB2 ⇒ iC1

cB3 ⇒ iC2

Figure 1. Graphical representation of a VSM with three modes
A, B and C

DOI
10.3384/ecp17132291

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

291



As the name suggests, variable-structure models exhibit
varying structural properties, which can either refer to the
properties of a real system or to the properties of the sys-
tem of equations used to mathematically describe it.

In variable-structure systems (VSSs), the change in
structure is a property of the physical system. Failure
situations like breaking mechanical or electrical connec-
tions or so-called agent-based systems represent examples
of VSSs.

On the other hand, in variable-structure models
(VSMs), the change in structure is a result of abstraction;
in other words the result of creating a model of a system.
For example, if detailed information about the switching
process is not relevant for an experiment, ideal switches
are used. Since ideal switches can attach or detach whole
parts of a model, a change in the structure of the under-
lying set of equations occurs: variables and relations can
change and the system of equations can grow or shrink in
size.

Variable-structure models can be used to implement
changes in the behaviour or the required level of de-
tail of the system under investigation. Components can
be added and removed during the simulation. This is
necessary for simulating agent-based systems or chang-
ing the discretization of a model by changing the num-
ber of identical components; as well as for implementing
ideal switches, breaking connections or limiters, leading
to the dynamic addition or removal of parts of the model
(Mehlhase 2015, chapter 4; Zimmer 2010, chapter 1.2).
Furthermore, changing the solver and the solver settings
during a simulation is possible when simulating VSMs.

Despite the multitude of use cases for VSMs, only very
few simulation environments support their definition and
execution. According to Zimmer (2010, chapter 1.3),
there are two main reasons for this: first, current modeling
languages lack the expressiveness required to accurately
define the structural variability. Second, it is technically
very challenging to simulate the resulting models.

Three different concepts have been developed for im-
plementing a simulation engine that can handle variable-
structure models: maximal state-space, hybrid decompo-
sition and dynamic causalization.

• In a maximal state-space, “state events switch on and
off algebraic conditions, which freeze certain states
for certain periods” (Breitenecker 2008, page 9). The
maximal state-space-model is static and can there-
fore be simulated using conventional tools.

• In contrast, when using the hybrid decomposition-
approach, the VSM is split into its modes, which
have a static structure and can be executed sequen-
tially. The order of execution is controlled at a met-
alevel, either within the simulation environment or
externally.

• The most flexible, but also the most challenging
approach from a technical point of view, is called

dynamic causalization. Here, the model is re-
causalized if necessary, which is impossible when
using the usual translation–compilation–execution
sequence.

Because structural changes always cause events and
VSMs thus represent a generalization of hybrid models,
modeling languages that support them need to provide a
generalized way to define events in order to achieve the
required expressiveness.

The most recent, Modelica-based1 attempts to imple-
ment a modeling language and a corresponding simulation
environment that support the simulation of VSMs are Sol,
DySMo and MoVasE as well as an unreleased prototype
of Dymola.

Sol Sol (Zimmer 2010) is an experimental language
which is intended to serve as a proof of concept for
simulating variable-structure models using dynamic
causalization. Conditional index changes as well as
the local definition of modes within components are
supported. Sol therefore allows the modeling and
simulation of “almost arbitrary structural changes”
in a truly object-oriented manner (Zimmer 2013),
but the proposed language constructs and simulation
techniques have not been integrated into commonly
used languages and tools yet.

Dymola Elmqvist, Mattsson, and Otter (2014) presented
an approach to simulate VSMs in Dymola. It rep-
resents an extension to the capabilities of the syn-
chronous state machines defined in Modelica 3.3 and
was implemented in a prototype version of Dymola
2015. Instead of defining additional language ele-
ments, the semantics of the existing language was
extended.

Using this approach, a large, but limited class of
VSMs could be simulated. Because it is not nec-
essary to process the model definition using an in-
terpreter, like in Sol, the simulation is significantly
faster. However, variable-structure models with
varying index could not be simulated. This possi-
bility was added later by extending the Pantelides al-
gorithm (Mattsson, Otter, and Elmqvist 2015), but it
has not been added to the official version of Dymola
yet.

DySMo (Dynamic Structure Modeling) is a Python
application that allows the simulation of VSMs
(Mehlhase 2015, chapter 7). Each mode is repre-
sented by an executable model with static structure
that terminates if the condition for a transition is trig-
gered. Upon termination, a variable is set that defines

1Tools that support VSMs to a certain degree, but rely on different
modeling concepts have been developed outside the context of simu-
lating physical systems, for example Hydra (functional programming),
JAMES (systems biology) and ANYLOGIC (large-scale agent-based sys-
tems). They are not suited for simulating the BEV model and thus not
considered further.

Simulating a Variable-structure Model of an Electric Vehicle for Battery Life Estimation Using
Modelica/Dymola and Python

292 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132291



the cause for the transition. DySMo then reads and
stores the results, initializes the next mode depending
on the cause for the transition and starts the next sim-
ulation. All modes and transitions have to be main-
tained manually.

MoVasE Esperon, Mehlhase, and Karbe (2015) propose
a methodology to append structural changes to exist-
ing models by externally defining conditional com-
ponent exchanges. The tool MoVasE (Modelica
Variable-structure Editor) implements the proposed
solution. The aim of MoVasE is to provide a platform
for facilitating the investigation of VSM-design. In
contrast to DySMo, MoVasE does not require the
user to create and maintain all modes manually. By
defining the structural variability through conditional
component exchanges, many modes can be created
and maintained. However, the flexibility of this ap-
proach is still limited with regard to the dynamic ad-
dition and removal of components.

In conclusion, the approaches taken by Sol and Dymola
solve the most important technical problems, but they have
not been integrated into standard languages and tools yet.
Therefore, script-based approaches (DySMo, MoVasE)
are necessary for studying the benefits and drawbacks of
using variable-structure models.

Three levels of complexity can be distinguished when
creating VSMs: in the simplest case, the modes are de-
fined on the highest level of the model, as shown in Fig-
ure 1. Second, individual components of the model can
exhibit modes. In the most complex case, the modes are a
result of the addition and removal of components, like in
agent-based systems.

From the point of view of the simulation engine, a
variable-structure model always consists of modes defined
at the highest level of the model, which is called the fac-
torized version of a VSM (Mehlhase 2015, chapter 5.1.2).
Depending on the tool used for simulation, it might be
necessary to manually create the factorized version of the
VSM. Additionally, it has to be made sure that the VSM
is valid. This includes avoiding chattering or unphysi-
cal transitions and unphysical factorized modes. A set
of guidelines that is intended to help with the creation of
valid VSMs was formulated by Mehlhase, Esperon, and
Karbe (2015).

In addition to many small examples that were used
to verify a certain language/tool (Zimmer 2010, chap-
ter 11; Mehlhase 2015, chapter 8), several examples
of the successful application of variable-structure mod-
els for solving real-world problems have been published
(Krüger, Mehlhase, and Schmitz 2012; Mehlhase, Es-
peron, Bergmann, et al. 2014; Möckel, Mehlhase, and
Nytsch-Geusen 2015). In these examples, a significant re-
duction of the overall time needed to simulate the system
could be achieved due to a big difference in the complexity
of the modes and a low number (≤ 40) of mode switches.

So far, no attempt to use a VSM of a BEV for estimating
its battery life has been published. In the next section, the
models used by the author are described, followed by a de-
scription of the observed advantages and disadvantages.

3 Implementation
In order to assess the usefulness of using a VSM of a
BEV for battery life estimation, both a conventional and
a variable-structure model were assembled and simulated.
Implementing the components used for assembling the
models was not part of this work; they are part of the
commercial Electrified Powertrains Library and the Bat-
tery Library developed by Dassault Systèmes2.

The conventional model consists of nine main compo-
nents: the driving cycle, the driver model, a control unit,
the models of the energy supply, the electric power train,
the auxiliary loads, the chassis and the environment, as
well as the charger model. In contrast, the VSM has two
global modes that reflect the “operating modes” of the ve-
hicle (Figure 2). The model that represents the “driving”
mode does not contain the charger and its control logic,
while the model that represents the “idle” mode only con-
tains the battery model, the charger model and the envi-
ronment model.

The inputs of both models are the desired speed of the
vehicle, the time frames the charger is plugged in, and the
ambient temperature over time. The VSM additionally has
a schedule for switching between modes based on the driv-
ing behaviour. All inputs are loaded from externally stored
files which are generated using a script. The script allows
the convenient definition of usage scenarios and ensures
that the resulting profiles are consistent.

The system of differential algebraic equations (DAEs)
of mode “idle” has 915 scalar unknowns and equations
and 25 continuous time states. Mode “driving” consists
of 3062 scalar unknowns and equations and has 29 con-
tinuous time states; the conventional model of the BEV
has 3219 scalar unknowns and equations and 38 continu-
ous time states. Since the system of ordinary differential
equations (ODEs) that needs to be integrated differs only
slightly, it can be expected that the speed-up is small, but
noticeable. It would be straightforward to use more com-
plex models of the power train during driving because a
template is used that allows the simple exchange of mod-
els. This would likely increase the performance gain of the
VSM compared to a conventional model, but also increase
the overall simulation time in both cases.

The VSM is simulated using a software written in
Python that allows the definition and simulation of VSMs
with globally defined modes using Modelica and Dymola.
The software is comparable to DySMo and described in
section 6.

2http://org-www.3ds.com/products-services/
catia/products/dymola/industry-solutions/

Session 6: Poster Session

DOI
10.3384/ecp17132291

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

293



Idle Driving

1

2

0

Figure 2. Variable-structure model of the BEV

0 1 2 3 4 5 6
0

50

100

150

V
el

oc
ity

/k
m

h−
1

0 1 2 3 4 5 6

350

400

450

V
pa

ck
/V

0 1 2 3 4 5 6
0

0.2
0.4
0.6
0.8

1

Time / h

SO
C

/1

0 1 2 3 4 5 6
−200

−100

0

Time / h

I p
ac

k
/A

Figure 3. Selected results of the experiment used for model validation

4 Simulation Results
The parameters of the models were chosen with the inten-
tion to reflect typical values for BEVs. The models were
checked for plausibility by simulating a short driving cy-
cle followed by charging. The driving phase starts after
15 min standstill and takes approximately 70 min. During
this time, a distance of 103 km is covered and the battery is
discharged from 90 % state of charge (SOC) to 10 % SOC,
which corresponds to a total consumed energy of approx-
imately 16.2 kWh. About half an hour after the driving
cycle is completed (at t = 2h), the charger is plugged in.
In Figure 3, selected results of the simulation can be seen.
There is no noticeable difference between the results of
the conventional simulation and the results of the VSM.

Knowing that the models are properly parameterized,
a simulation of the SOH spanning several years could be
performed. Two usage profiles were created, which are
shown in Figure 4 and Figure 5. Both span a week and
are used repeatedly if longer scenarios are needed. In the

first scenario, the battery is always charged fully, whereas
in the second profile, the SOC only varies from approxi-
mately 60 % to 40 %.

0 1 2 3 4 5 6 7
0

50

100

150

Time / days

V
el

oc
ity

/k
m

h−
1

Figure 4. Demanding usage scenario: desired velocity. When
using this driving cycle, 658 km are driven per week; the yearly
mileage amounts to 34238 km.

The higher usage and the storage at higher SOC should
result in faster ageing of the battery in the first scenario.

Simulating a Variable-structure Model of an Electric Vehicle for Battery Life Estimation Using
Modelica/Dymola and Python

294 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132291



0 1 2 3 4 5 6 7
0

50

100

150

Time / days

V
el

oc
ity

/k
m

h−
1

Figure 5. Relaxed usage scenario: desired velocity. When us-
ing this driving cycle, 289 km are driven per week; the yearly
mileage amounts to 15040 km.

The simulation results are shown in Figure 6.

0 2 4 6 8 10 12
0.85

0.9

0.95

1

Time / years

SO
H

/1

Relaxed; Ref.
Relaxed; VSM
Demanding; Ref.
Demanding; VSM

Figure 6. State of health of the battery

For the assessment of the battery’s ageing behaviour,
the models were simulated until the SOH falls below 0.85.
This value was chosen because a compromise between the
time needed for simulation and the length of the calculated
trajectory had to be found and a ∆SOH of 0.15 is regarded
meaningful. Moreover, in this case, more data does not
mean more information because all input and model pa-
rameters are estimated values anyway.

There is no significant difference between the result of
the conventional model and the VSM: the relative error is
in the range of ±0.02%.

5 Advantages and Disadvantages of
the Variable-structure Model

In Figure 7 and Figure 8, the elapsed CPU time during a
2-week simulation of the BEV model using the “relaxed”
driving cycle (Figure 5) is shown. The CPU time com-
prises the time needed for initializing the system(s) of
equations and the time needed for integration. The same
solver settings are used for both the conventional and the
variable-structure model.

In both figures, the difference between driving and
standing can be seen clearly due to the step wise increase
of the elapsed time resembling a staircase. This is the re-
sult of using a solver with variable step size: during driv-
ing, only a small step size can be used due to the dynamic

0 2 4 6 8 10 12 14
0

50

100

150

Time / days

C
PU

tim
e

/s

conventional model
variable-structure model

Figure 7. CPU time; dense output enabled

0 2 4 6 8 10 12 14
0

50

100

150

Time / days

C
PU

tim
e

/s

conventional model
variable-structure model

Figure 8. CPU time; dense output disabled

changes of the state variables. In contrast, the step size
can be greatly increased when the vehicle is idle.

There is a significant difference in the elapsed time de-
pending on whether dense output is enabled or not. If
dense output is enabled, the conventional model takes
longer to calculate, depending on the size of the output
interval. The effect is especially noticeable during the idle
phases because during this phase, the necessary step size
calculated by the step size control algorithm is usually big-
ger than the desired output interval.

However, when dense output is disabled, the con-
ventional simulation becomes faster than the variable-
structure model. A reason for this is that each system of
equations (mode) needs to be initialized.

In Figure 9, a more detailed account of how much time
is spent on which part of the simulation is given. On the
right hand side, two pie charts visualize the data listed
in the table on the left. The area of the pie charts cor-
responds to the total duration of the simulation, whereas
the slices denote the time spent on the initialization of the
systems of equations, the integration itself and the post-
processing of the data. Additionally, time is needed for
writing the result files and “consumed” by the operating
system for other processes. There is a striking differ-
ence between the conventional and the variable-structure
model: in the former, the integration takes 99.9 % of the
time, but only 52.2 % of the time needed for simulating
the latter is actually spent on the integration. Therefore,
the VSM takes longer to simulate, even though the inte-
gration finishes 0.5 h earlier. A large, unnecessary part
of the overhead is caused by Dymola’s Python interface:
since the simulateExtendedModel()-command only

Session 6: Poster Session

DOI
10.3384/ecp17132291

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

295



Task Reference VSM

Initial Compilation 4.5 s 7.4 s
Initialization 1.3 s 1.0 h
Integration 7.7 h 7.2 h
Recompilation — 5.6 h
Reading .mat-files ≈ 0.0s 19.3 s
Post-processing ≈ 0.0s 1.2 h

Total Duration 7.7 h 15.1 h

Initialization
Integration

Recompilation
Post-processing

7.7 h

1.0 h

7.2 h
5.6 h

1.2 h

Figure 9. Comparison reference model–VSM: time measurements for a simulation of the demanding scenario for 3 years. In the
variable-structure model, 5304 mode switches were performed.

supports passing real numbers for initialization, modifiers
have to be used for passing the necessary vectors and at-
tributes. This causes a recompilation of the model at each
mode switch. By finding a workaround for this, the overall
simulation time of the VSM could be reduced drastically.
A further reduction could be achieved by improving the
implementation of post-processing.

When working with VSMs, besides the restriction to
use the same model for all phases, also the restrictions
to use the same settings and result files for all phases no
longer exist. Therefore, the question “Does it make sense
to use a variable-structure model of a BEV for estimating
its battery life?” may still be answered with “yes”, even if
the time needed to calculate the output trajectory does not
decrease very much.

One problem that arises when estimating the battery life
using a full vehicle model is the size of the result file,
which depends on the settings for dense output and the
length of the simulation. In order to limit the amount of
data stored in the result file, the output interval needs to be
set to a constant, high value (for example 24 h when simu-
lating 15 years). Additionally, it is necessary to select the
set of variables that has to be stored in advance, for exam-
ple by using Dymola’s __Dymola_selections-annota-
tion. This means that all detailed information calculated
during the course of the simulation is irretrievably lost and
not available for analysis. When simulating a VSM, this
problem is much less likely to occur as every mode has
its own result file and the individual simulation times are
much shorter3. Moreover, it is possible to store the results
in a high resolution when the vehicle is driving and in a
low resolution otherwise. Therefore, it becomes possible
to perform a detailed analysis of the driving behaviour at
the end of the battery’s life.

3Strictly speaking, the memory limitations could also be avoided by
implementing the possibility to split up result files when performing a
conventional simulation in Dymola.

6 PyVSM

In this section, the software used for implementing and
simulating the VSM of the BEV is described. It is
called PyVSM and supports the simulation of factorized
variable-structure models using Dymola’s Python inter-
face. PyVSM is intellectual property of Dassault Sys-
tèmes Deutschland GmbH.

The basic idea of PyVSM is to use Dymola for simu-
lating the modes and Python for switching between them.
Therefore, it is required that each mode of the factorized
VSM is a complete Modelica model that can be simulated
using Dymola. Modes, transitions and solver settings of
the VSM are defined using JSON-files. When a condi-
tion of a transition becomes true, the simulation of the cur-
rently active mode terminates and the initialization of the
next mode is initiated by PyVSM based on the results of
the previous mode.

In Figure 10, the processing steps taken to simulate a
VSM in PyVSM are shown in more detail. First, the
JSON-file used for the definition of the VSM is read.
Then, for each mode, a directory used during simulation is
created and the Dymola-interface is instantiated with the
working directory set to the previously created folder. The
actual simulation of the VSM starts by executing the initial
transition in order to set the initial values for the simula-
tion. The active mode is set according to the definition of
the transition and the simulation is started. Upon termi-
nation, the relevant results are loaded to PyVSM, includ-
ing the variable transitionID. Its value corresponds to
the numerical identifier of the transition that has to be exe-
cuted next. If and only if it is 0, the end of the simulation is
reached. After this, the individual results of each mode are
concatenated and post-processed. This includes the calcu-
lation of characteristic values such as the time needed for
initialization or the step size and the resampling of the data
to the specified interval length. Last, the post-processed
data is saved and plots are generated if desired.

Simulating a Variable-structure Model of an Electric Vehicle for Battery Life Estimation Using
Modelica/Dymola and Python

296 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132291



Load JSON files

Prepare directories
Open Dymola instances

Execute transition

Simulate active mode
Load results

Post-process data

transitionID = 0

Export data
Generate plots

transitionID 6= 0

Figure 10. UML-activity diagram of PyVSM

PyVSM is implemented in Python using object-
oriented programming techniques. It is capable of sim-
ulating factorized variable-structure models using Model-
ica/Dymola, but, being a prototype, misses advanced fea-
tures such as automatic validity checks of the input files
or a graphical user interface. Additionally, externally con-
trolling the simulation via Dymola’s Python interface gen-
erates an overhead. Nonetheless, PyVSM provides mod-
elers with the possibility to simulate models that would be
difficult or even impossible to implement in a conventional
simulation environment in a straightforward manner.

7 Conclusion
A variable-structure model (VSM) of a BEV was imple-
mented with the aim of making the simulation of the bat-
tery ageing faster by switching between a complex model
used when the vehicle is driving and a simpler model used
when the vehicle is idle. Since VSMs are not yet sup-
ported by Modelica/Dymola, a software had to be written
that provides means to define the structural variability and
performs the mode switches.

When simulating the variable-structure BEV model, it

is found that while the CPU time needed for integra-
tion decreases, thus matching the expectations, the overall
simulation time increases due to overhead generated by
switching between models. This is caused by the proper-
ties of the model on the one hand (low difference in the
complexity of the modes, many (> 5300) mode switches)
and the implementation of the software used for simula-
tion on the other hand. The overhead comprises the ex-
cess time needed for compiling, initializing the systems
of equations, reading the result files and post-processing
them as well as the unnecessary recompilation of the
modes at all transitions. Nonetheless, the VSM allows
a more detailed analysis of the simulation result due to
memory limitations occurring when using a conventional
model.

Acknowledgements
This work was supervised by Markus Andres, who con-
tributed by discussing results and giving helpful advice on
plans for further work. Marco Keßler and Markus Andres
proofread the manuscript. Further help regarding the used
battery models and the experiment set-up was provided by
Lukas Rohr. The project was carried out during a paid in-
ternship at Dassault Systèmes Deutschland GmbH.

References
Breitenecker, Felix (2008). “Development of Simulation

Software – from Simple ODE Modelling to Structural
Dynamic Systems”. In: Proceedings of the 22nd Euro-
pean Conference on Modelling and Simulation (ECMS
2008). DOI: 10.7148/2008-0005-0022.

Elmqvist, Hilding, Sven Erik Mattsson, and Martin
Otter (2014). “Modelica extensions for Multi-Mode
DAE systems”. In: Proceedings of the 10th Inter-
national Modelica Conference. DOI: 10 . 3384 /
ecp14096183.

Esperon, Daniel Gomez, Alexandra Mehlhase, and
Thomas Karbe (2015). “Appending Variable-structure
to Modelica Models (WIP)”. In: Proceedings of the
Conference on Summer Computer Simulation. Sum-
merSim ’15. Chicago, Illinois: Society for Computer
Simulation International.

Krüger, Imke, Alexandra Mehlhase, and Gerhard Schmitz
(2012). “Variable Structure Modeling for Vehicle Re-
frigeration Applications”. In: Proceedings of the 9th
International Modelica Conference. DOI: 10.3384/
ecp12076927.

Mattsson, Sven Erik, Martin Otter, and Hilding Elmqvist
(2015). “Multi-Mode DAE Systems with Varying In-
dex”. In: Proceedings of the 11th International Model-
ica Conference. DOI: 10.3384/ecp1511889.

Mehlhase, Alexandra (2015). “Konzepte für die Mod-
ellierung und Simulation strukturvariabler Modelle”.
PhD thesis. Technische Universität Berlin, Fakultät IV
– Elektrotechnik und Informatik. DOI: 10.14279/
depositonce-4514.

Session 6: Poster Session

DOI
10.3384/ecp17132291

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

297



Mehlhase, Alexandra, Daniel Gomez Esperon, Julien
Bergmann, et al. (2014). “An example of beneficial
use of variable-structure modeling to enhance an ex-
isting rocket model”. In: Proceedings of the 10th In-
ternational Modelica Conference. DOI: 10 . 3384 /
ECP14096707.

Mehlhase, Alexandra, Daniel Gomez Esperon, and
Thomas Karbe (2015). “Challenges when Creat-
ing Variable-structure Models”. In: Proceedings
of the 5th International Conference on Simula-
tion and Modeling Methodologies, Technologies
and Applications, pp. 101–110. DOI: 10 . 5220 /
0005521601010110.

Möckel, Jens, Alexandra Mehlhase, and Christoph
Nytsch-Geusen (2015). “Exploiting Variable-structure
Models in the Context of Building Simulations within
Modelica”. In: Proceedings of BS2015. International
Building Performance Simulation Association. URL:
https : / / www . researchgate . net /
publication/301229350.

Stüber, Moritz (2016). “Simulating a Variable-structure
Model of an Electric Vehicle for Battery Life Estima-
tion Using Modelica/Dymola and Python”. Master’s
Thesis. University of Applied Sciences Vorarlberg.

Zimmer, Dirk (2010). “Equation-Based Modeling of
Variable-Structure Systems”. PhD thesis. Swiss Fed-
eral Institute of Technology, Zürich. DOI: 10.3929/
ethz-a-006053740.

– (2013). “A new framework for the simulation of
equation-based models with variable structure”. In:
SIMULATION 89.8, pp. 935–963. DOI: 10.1177/
0037549713484077.

Simulating a Variable-structure Model of an Electric Vehicle for Battery Life Estimation Using
Modelica/Dymola and Python

298 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132291


