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Abstract
Analysis  of  dynamic  systems  is  often  carried  out  at
steady state condition. For cyclic systems like rotating
machinery, it is not possible to detect this condition by
simply monitoring the change rate of  their  variables,
due to their periodicity. This paper focuses on methods
for stationary periodic steady state identification of AC
electrical systems. An overview of relevant methods is
given and mappings of periodic variables to equivalent
stationary variables are  discussed.  Two new periodic
steady  state  monitors  based  on  Short  Time  Fourier
Transformation are proposed. The study was motivated
by the need to identify the steady state condition of an
aircraft electrical network for power quality checks. An
implementation with Modelica tools is demonstrated.

Keywords:  periodic  systems,  steady  state
identification, wavelet, FFT

1 Introduction
Testing of power quality criteria of electrical compo-
nents and networks according to industrial standards,
as  (MIL-STD-704F,2004),  often  demands  testing  in
settled condition. When the data is generated from a
simulation of the physical system, at best, the system
might be initialized in steady-state  condition already.
For non-linear switching and periodic systems this con-
dition might not be found easily or only approximately
from  alternative  representations,  as  in  (Kuhn  et
al.,2012). In this case, the time-domain simulation of
the system may converge to the exact periodic steady-
state condition from a start condition, if the system is
internally stable and well damped. The correct estima-
tion  of  the  convergence  time  becomes  crucial  if  the
evaluation of the quality criterion is part of a closed-
loop optimization of the system itself.  Then the time
for simulation to reach steady-state condition, may af-
fect the total time for the optimization process signifi-
cantly. While the convergence rate may be known ana-
lytically for simple systems, generally this is not the
case for arbitrary systems. This chapter shows practical
methods for testing on the periodic steady-state condi-
tion  of  AC  electrical  circuits  to  reduce  unnecessary
simulation time. Input signals can be simulation results
or measurements. It is assumed that the differential al-
gebraic equation system or the loosely coupled subsys-

tem of interest is completely observable via the chosen
output. 

To demonstrate the requirement, we will use the fol-
lowing example of a small aircraft electrical network in
Figure 1. It was used as part in a loop of an industrial
design process of a generator, whose design parameters
are  generated  by  a  foregoing  routine  (Kuhn  et  al.,
2012). The generator feeds a mixed AC resistive and
DC  6-pulse  switching  load.  The  model  simulates
through an initial transient phase, till  it  reaches peri-
odic steady-state. The design is then tested for confor-
mance with industrial standards on power quality in the
AC distribution line, which is found between the gen-
erator on the left and loads on the right. Power quality
is tested via a Fast Fourier Transformation (FFT) Rou-
tine block. 

The  fast  identification  of  periodic  steady-state  is  of
wider interest in simulation technique; for example for
the non-linear transfer analysis in Saber  (Saber,2016)
or  a  similar  Modelica-based  tool  (Bünte,2011).  Both
record the input/output behavior of a system, where the
input is a frequency sweep signal. Its rate of change is
limited in order to arrive -hopefully- in steady-state at
the output. The sweep rate may need manual tuning for
the specific condition, which may be circumvented by
an automatic steady-state detection.

This paper focuses purely on the detection of the peri-
odic steady-state of systems with output  x(t) , which

Figure 1: Simulation model for power quality of a small
aircraft electrical network 
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can  be  represented  by  a  superposition  of  band-re-
stricted  time-varying  harmonic  phasors  Χ k (t) .  with
base angular velocity ωbase .

x(t )≈∑
k∈K

Χk (t)⋅e j kωbase t , K∈ℤ ,Χ∈ℂ , x∈ℝ  (1)

The  time  variant  complex  variable  Χ k (t )  is  called
dynamic phasor

Χ k (t )=
1
T ∫

t−T

t

x(ζ)e− j kωe ζ d ζ (2)

.  The  mathematics  can  be  found  for  example  in
(Demiray,2008). An  example  of  such  a  system with
time-varying content around distinct frequencies is dis-
played in Figure 2. 

This  paper is  structured as follows: In the following
section  the  difference  between steady-state  and  peri-
odic steady-state is highlighted. An overview on appli-
cable methods for Steady State Identification is given
in  section  3.  Section  4 discusses  the  transformation
from periodic to non-periodic domain by pre-operators.
The main theory of three selected methods for steady-
state detection is presented and tested in section 5. This
is followed by a conclusion. A theoretical investigation
on parametrization of Discrete Fourier Transformation
(DFT)  for  the  purpose  of  Total  Harmonic  Distortion
(THD-based steady-state detection is given in the Ap-
pendix.

2 Steady state versus periodic Steady
State Identification

In  general,  a  time-variant  system  F (x , ẋ ,u)=0 ,  ex-
cited by input u or autonomous, may show stable-sta-
tionary,  unstable-stationary,  stable-periodic,  unstable-
periodic or chaotic behavior of the state variables and
possibly  of  the  outputs.  For  non-linear  systems,  the
system  may  bifurcate  into  several  possible  periodic
steady-state conditions  (Schupp,2003).  For linear dif-
ferential  algebraic  systems,  a  steady-state  detection
mechanism may search for the condition

 x( t )−x(t−Δ t )=0  or ẋ=0 (3)

. In practical applications only the detection of a mini-
mum convergence rate ẋ<α1  may be feasible, since a
longer duration of ẋ=0  may not appear because of as-
ymptotic convergence and/or additive noise. In the case
of periodic systems, the steady-state definition has to
be adapted. It  is called a periodic steady-state condi-
tion, where consecutive cycles do not deviate,  which
means they have an auto-correlation of 1. This can be
expressed by

x(τ)−x(τ−T )=0 ∀τ∈[ t−T .. t ] (4)

, where the periodicity time constant  T  replaces the
infinitesimal Δ t  in equation 3.

To display the difference between steady-state and pe-
riodic steady-state, Figure 3 shows the output of a very
basic first-order lowpass ( PT 1 ) system, excited by a
unit step at t=0. The system is asymptotically internal
stable and converges to 1. An amplitude of 0.95 may be
seen as quasi steady-state condition, appearing after 3
times characteristic time T. 

In contrast to this, the transient of phase A of a three-
phase AC voltage of the aircraft electrical network ex-
ample is plotted in  Figure 4. While it is oscillating, at
the same time, it shows a first-order like transient be-
havior of the envelope.

3 Overview of methods 
The process of signal-based steady-state detection has
remarkable analogies with the theory of fault detection.
The signal-based fault detection observes the behavior
of a system on the change from its nominal (dynamic)
behavior. Steady-state detection basically observes the
behavior of a system on its change from past behavior.

Figure 2: Fourier spectrum of nonstationary signal, with
spectral content around sin (ωe ) , sin (ωe⋅(6±1)) ,

sin (ωe⋅(12±1))

Figure 3: Transient of PT 1  system

Figure 4: Transient of AC voltage of small aircraft
electrical network example (original data)
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They differ,  as  fault  detectors  generally are  designed
offline  with  specific  fault  data  and  models;  absolute
values  on  nominal  or  faulty  conditions  are  known.
Steady-state observers do not necessarily rely on de-
tailed  knowledge  of  the  system.  Isermann
(Isermann,2006) classifies  methods  for  single  signal
fault-detection into methods with “limit or trend check-
ing”,  and methods  with  “signal  models”.  “Limit  and
trend checking” methods are applicable for measurable
absolute values or measures from statistical observers.
Detection by “signal models” include correlation meth-
ods, spectrum analysis and wavelet analysis. Isermann
(Isermann,2006) defines the basic steps of a scheme for
fault detection with signal models, as preparation and
transformation into “signal model“, extraction of rele-
vant measures by “feature generation” and detection of
faults,  or  by comparison  to  the  nominal  behavior  in
“change detection”. 

Similar  to  it,  steady-state  detection  can be separated
into the steps:

• “Signal model” preparation, for periodic sys-
tems with removal of oscillation by an opera-
tor: The prepared signal can be any property in
time domain, frequency domain or stochastic
property. 

• Application of test on steady-state: The test it-
self is based on the signal model.

• Decision making: the steady-state decision has
to be made. It is very specific to the system,
where  noise  and  additional  dynamics  super-
pose  the  potential  periodic  system  and  the
threshold has to be set based on prior knowl-
edge.

(additive high-frequency noise is not correlated by def-
inition, and should be filtered out from the original sig-
nal before, by low pass filtering)

For the steady-state detection,  the following methods
attracted attention in research in recent years:

The F-like test- developed first by Cao and Rhinehart
(Cao and Rhinehart,1995) - belongs to the class of in-
dex-based change-detection methods1. It relies on sta-
tistical methods to identify steady-state in noisy pro-
cesses.  It  was tested and expanded on afterwards by
Rhinehart  for  a  multi-variable  case  (Brown  and
Rhinehart,2000).  Applications  included  different  pro-
cesses,  especially  in  chemical  engineering.  Other
works  by  Kelly  and  Hedengren  (Kelly  and
Hedengren,2013) concentrated on slow varying drifts
in non-stationary processes with application to a win-
dowed signal. 

Wavelet transformation can be used to analyze charac-
teristics of a specific system and match its specific out-

1 A “F-Test“ is a detector of the change in variance

put patterns. Based on this, Jiang (Jiang et al.,2000) de-
veloped  a  method  for  identification  of  steps,  peaks,
noises, abnormal sudden changes and similar for chem-
ical processes and reciprocally steady-state. The tech-
nique is not adapted to on-line steady-state detection.
However, in an independent work, Korbel  (Korbel et
al.,2014) developed a steady-state identification for on-
line reconciliation, based on wavelet transform and fil-
tering for real-time data.

THD is a quality criterion, which is a measure of the
distortion of a base oscillation through its  harmonics
(multiples). In case where industrial standards demand
testing  for  a  specific  maximum  THD,  the  criterion
needs to  be  evaluated  at  periodic  steady-state  condi-
tion. When THD is evaluated repeatedly,  observation
of convergence of ΔTHD  can be used as a direct indi-
cator of the steady-state condition. This definition is in-
dustrially sufficient for the purpose of testing of THD.
It was proposed in (Kuhn et al.,2015). 

A further  method for  detecting steady-state  is  to  use
auto-regressive exogenous models with exogenous in-
puts  (ARX).  This  method  allows  the  SSI  by system
identification, where an auto-regressive model is tuned
from the results of simulation or measurements. It is
not based on detailed knowledge of the system equa-
tions.  The  identifiability  of  the  system  is  checked
where  singularities  in  the  model  matrices  appear  in
case of steady-state. Based on this singularity, an index
is proposed (Rincón et al.,2015). 

From these methods,  the “F-like test”, wavelet-based
test,  THD-based test,  and an adaptation of the THD-
based test in frequency domain will be discussed in de-
tail in the next sections. The first, due to its popularity
and simplicity.  The second,  as  a  promising approach
and to test the new Modelica Wavelet library. The THD
criterion and the adapted frequency-based criterion is
chosen,  since  it  relies  on  the  objective  criterion  di-
rectly. An overview is shown in Figure 5.

All methods are tested for detection of steady-state oon
the small electric on-board network example from Fig-
ure 1.

Figure 5: Overview on applied methods
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4 Mapping  of  periodic  to  non-
periodic variables

For AC circuits, the method for steady-state testing has
to be capable of detecting periodic steady-state. Either
by itself, or the signal model preparation has to trans-
form it to an oscillation-free measure. The problem can
be overcome by mapping of  the periodic signal  to a
non-cyclic equivalent and identification with standard
methods.  For  a  system of  type  (1),  knowledge  of  a
dominating,  excited  oscillation  can  be  exploited,  to
identify the steady-state  condition of  the AC voltage
signal. The signals main content is a modulation of a
baseband signal xbb  and forced oscillation as

x(t)=ℜ{xbb(t )e jωbase t
} (5)

plus  harmonic  content  at  k⋅ωbase ,  plus  uncorrelated
noise.  The  minimum  periodic  cycle  is  the  forced
oscillation’s time constant  T base=2π/ωbase ,  2⋅T base  in
case of additive odd harmonics, or arbitrary in case of
non-harmonic content. 
Equation (4) is not useful to implement, since the con-
dition is only fulfilled for perfect congruence. Instead,
it can be simplified by using a norm x̆(t ) . The steady-
state condition can be identified directly via ˙̆x(t)<ϵ  or
via some more advanced methods on x̆(t) , listed next.

The test on steady-state can be seen as testing of the
auto-regression of the signal, separated in intervals of
length T . And it is similar to regression testing of two
signals  by  the  use  of  norms  (e.g.  (Pollok  and
Bender,2014)). The maximum error norm of consec-
utive periods generates a periodic sampled one-dimen-
sional output:

x̆me [t ]=max(‖x(τ)−x( τ−T )‖

‖x(τ)‖ )∀τ∈[t−T .. t ] (6)

The norm is quite efficient, due to its simplicity. Since
it is a norm on signal amplitude rather than energy, it
will penalize sharp discontinuities and noise.

Similar to this and even more easy to implement, by a
rough  knowledge  of  the  period,  only  peak  values
within consecutive periods can be selected. The signal
corresponds  to  sample-and-hold  of  the  peak  values
with sample period  T . In aeronautical standards, this
is often called the “envelope”:

x̆e [ t ]=
^x(t−T .. t )− ^x (t−2T .. t−T )

^x(t−T .. t)
(7)

Only one sample is gained within one interval at maxi-
mum or in case of application to the absolute value, an
additional  sample  at  minimum.  Peak  values  may  be
prone to noise as  some electronics,  as rectifiers,  add
high portions of distortion to the high amplitude part of
a voltage wave.

The  temporal (time  limited)  auto-correlation treats
not only minimum and maximum values, but all data
of a period. It normalizes the signal to 

˘xauto [t ] =

∫
t−T

t

x(τ−T )x*
(τ)d τ

( ∫
t−2 T

t−T

|x(τ)|2d τ)
1/2

(∫
t−T

t

|x(τ)|2 d τ)
1 /2

=

∫
t−T

t

x(τ−T )x*
(τ)d τ

( ∫
t−2 T

t

|x(τ)|2d τ)
1/2

(8)

This norm is tolerant to noise and time shifts but highly
prone to incorrect estimation on length of period  T .
The temporal auto-correlation measure is similar to the
temporal auto-co-variance γyy  of stochastic signals. It
is common to think complex or unmodeled processes
as  stochastic  processes  (Oppenheim,1999),  which
opens  the  field  of  stochastic  data  analysis  for  the
problem. Other coherency metrics on spectrum, energy
and  time  or  phase-shift  are  listed  in  (Marple  and
Marino,2004).

Alternatively the steady-state condition can be seen as
the steady-state condition of the baseband signal. When
the  condition of  a  cycle  is  known exactly,  it  can be
identified by one of the following methods:

AC coupled RMS (Root Mean Square): This method is
best known for power supply networks at a fixed fre-
quency of 50 or 60 Hz. It can be calculated as by MIL
704f, where RMS is the “value for one half-cycle mea-
sured between consecutive zero crossings of the funda-
mental  frequency  component”.  Information  on  har-
monic contents is lost by the integration.

X RMS=√ 1
T
∫

0

T

x(t)2
⋅dt (9)

When  the  phase  angle  θ  is  known,  mathematical
transformations to  phase-fixed reference system can
be applied (e.g. dq0/Park system or Fortescue transfor-
mation): For simulation, the phase angle is known. For
real electrical systems, for single synchronous genera-
tor  fed networks,  it  can be obtained by measuring a
machines angular position. Without position measure-
ment, the phase can be derived from the AC voltage by
Phase Locked Loops (PLL). A PLL is a control circuit
which generates an output signal in proportion to the
phase difference of  a reference signal  to  a  measured
signal. It can be used to adapt the frequency and phase
of  an  observer  to  the  measured  signal  (Krause  et
al.,2002). 

Alternatively, the base band and harmonics can also be
identified by frequency selective filtering: Signals can
be analyzed in the spectral domain, where the base fre-
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quency is usually associated with the spectral content
of maximum amplitude. The frequency spectrum can
be computed as the correlation of the signal with theo-
retically infinite sinusoidal waves at certain frequencies
(Fourier  transformation)  or  the  correlation  to  finite
wave packages at prevailing base frequencies (wavelet
transformation  (Mallat,2008)). For wavelet transform,
one has to distinguish between direct application on si-
nusoidal signals and application on the pre-processed
oscillation-free  signal.  For  finite  signals,  the  Fourier
transformation is called Short Time Fourier Transfor-
mation,  which  can  be  implemented  efficiently  using
Fast  Fourier  Transformation  (FFT)  (Cooley  and
Tukey,1965). 

5 Implementation  and  validation  of
tests 

In the following section, the selected theories of Steady
State  Identification  are  summarised  and  the  steady-
state monitors are tested through experiments. 

5.1 F-like test

The  F-like  test,  by  Cao  and  Rhinehart  (Cao  and
Rhinehart,1995) is based on statistical measures. The
algorithm tests a signal on showing settled distribution
at an associated level of significance. Possible distribu-
tions are uniform and Gaussian distribution. Measures
are variance between data, moving average value and
variance in the data itself. This method relies on sam-
pled data.

The following steps can be implemented at low compu-
tational effort: First, the sampling vector is filtered by a
filter factor of λ1 .

X f [ i]=λ1 X [ i]+(1−λ1)⋅X f [i−1 ] (10)

Where X [ i]  are sampled data, X f [ i]  are filtered val-
ues and λ1  is a filter factor. In the second step, a mea-
sure of the variance v f

2  is computed with a moving av-
erage filter factor of λ2 :

v f [i ]
2
=λ2(X [ i ]−X f [ i−1 ])2+(1−λ2)v f [ i−1 ]2 (11)

The unbiased estimate of the variance based on the fil-
tered squared deviation from previous filtered values
var 1  is given by:

var1[i ]=(2−λ1)
v f [i ]

2

2
(12)

A measure on the second filtered variance estimate δf
2

is calculated based on the filtered square differences of
successive data:

δf [i ]
2
=λ3(X [ i ]−X [i−1 ])2+(1−λ3)δf [ i−1 ]2 (13)

The formula includes a moving average filter with fac-
tor λ3 . This second variance var 2  is given by:

var2[i ]=
δf [ i]

2

2
(14)

Finally, the Steady State Identification index R  is ob-
tained as the ratio of the two variances:

R=
(2−λ1)v f [ i]

2

δf [i ]
2 (15)

While  R  is  a  continuous  measure,  decision  making
needs tuning of a threshold R t  to distinguish between
steady-state R<R t  and non steady-state R>R t . Filter
values have to be tuned to match the time constants of
the system under observation.  Some more theoretical
considerations on correct and incorrect identification of
steady-state  are  given  in  (Cao  and  Rhinehart,1995),
with respect to different types of error signals. 

In a first trial, the F-like test was applied directly on the
sinusoidal  phase  voltage.  No useful  results  could  be
gained  (not  plotted),  which  can  be  explained  by the
strong  correlation  of  the  sinusoidal  shaped  signal.
Therefore, isolation of the signal of interest had to be
conducted  first.  For  this  example,  simulation  results
did  not  show  significant  difference  between  several
methods of RMS detection. Those are transformation
by phase angle, integration over one period with start
and end conditions identified by zero crossing detec-
tion,  and  peak-value  detection.  Figure  7 (top  plot)
shows the source signal of the test. The AC voltage is
mostly settled after 0.1 seconds simulation time with
an additional step of 10% at 0.3 seconds.

The influence of different types of sampling, and there-
fore different dominating noise on identification index
R, can be seen in Figure 6. The plots present the results
of the F-like test, applied on the same source data but
with regular sampling intervals 6f and 24f, and irregu-
lar  sampling  around 6f and around 25f.  The lambda
factors were tuned manually. 

It can be clearly seen that the quality of the results di-
verge on a significant scale. The results based on the 1f

Figure 6: “R” index of F-like test for several sampling
rates; input signal see Figure 7, top diagram
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sampling show some slow transient behavior, which is
hard  to  interpret.  In  contrast,  6f  and  24f  sampling
clearly  identify  changes.  The  R  statistics  show  low
pass behavior at steps of the input signal. A decision
value on steady-state can be set but needs to deal with
the chattering around the boundary value R t .

5.2 Wavelet test

In wavelet analysis, the one-dimensional time variant
input signal is decomposed into time variant subspaces
with  bandpass  characteristics.  By  iterative  wavelet
multi-level decomposition, the original signal  f (t )  is
projected  into  a  sequence  of  nested  subspaces;  each
subspace is characteristic for a spectral content, similar
to the indices of the Discrete Fourier Spectrum: 

f (t )=∑
i∈ I j

c J , i φ J , i+∑
j=1

J

∑
k∈k1

d j , k ψ j , k (16)

The first sum represents low frequency content, while
the right part represents higher frequency content. The
wavelet spectrum originates from iterative bisection of
the high-frequency signal  up to  scale  J .  ψ j(t)  are
scaled  mother  wavelets  which  define  orthogonal
spaces.  Filtering of  a signal  corresponds to  variation
and limiting of its wavelet coefficients  c j , i  and  d j , i .
Adaptive methods for filtering of Gaussian noise exist
in many wavelet toolboxes. The filtered signal in the
time domain can be restored by inverse transformation
of the conditioned data. Formulas for discrete wavelet
transformation are similar.2

Similar to the F-like test, this method needs separation
of the fundamental of the amplitude- modulated wave
first. While this can theoretically be done by an addi-
tional wavelet transformation, there is no benefit com-
pared to the RMS method presented before. Next, the
signal  can be de-noised  if  necessary.  Jiang  (Jiang  et
al.,2003a) proposes to separate the baseband signal into
the desired process trend T(t) and process noise N(t),
by wavelet multi-level decomposition, filtering and re-
construction. Any other type of continuous or discrete
filters may be used equivalently.  Although the signal
will suffer from a frequency dependent group delay by
the filter, for steady-state detection, this can be seen as
negligible compared to the typical time scales.

The wavelet-based detection itself uses the fact that a
wavelet transform Wf (t)  of a signal  f (t )  is propor-
tional to the time derivative of the signal smoothed by
the scaling function φ  (see wavelet theory for details):

W f (t )=2
d
d t

( f∗φ )( t ) (17)

Furthermore, by the wavelet transform of the wavelet
transform  WWf (t )  one gets an analogon to the sec-
ond-order  derivative.  Analogue  to  assumption  of  a

2 For background on wavelet analysis, one may see Debnath (Debnath
and Shah,2002), section “Wavelet bases and Multiresolution Analysis”. 

steady-state condition as a local extremum where first
and second time derivative being zero, single and dou-
ble wavelet transform can be applied. At a (local) mini-
mum, the conditions

Wf (t )<αw 1 , d(Wf (t ))/dt<αw2 . (18)

must hold true. Similarly, for steady-state detection in
the time domain, specific scaling of the  α  would be
necessary. Where an ideal temporal derivative function
is unspecific of the frequency and a Fast Fourier Trans-
formation based spectral decomposition lacks informa-
tion  on  the  temporal  variation,  a  wavelet  can  be
adapted to the “characteristic scale”. This means, the
frequency of the wavelet is chosen close to the charac-
teristic response time  τ  of a system which acts as a
kind of a bandpass filter. This can be realized by the
sampling frequency directly, or iteratively by fragmen-
tation into a wavelet spectrum with narrower bands of
equation  (16)  which  is  called  multi-resolution  repre-
sentation or alternatively Jiang (Jiang et al.,2000) calls
it multi-scale process data analysis.

The steady-state index  β(t )  is calculated from equa-
tions (19-21), where θ(t )  is a factor of combined con-
tributions from the first and second order wavelet and
γ(t )  is an amplitude-limiting signal operator on the

second order wavelet transform.

θ(t )=|Wf (t )|+γ(WWf (t)) (19)

γ(WWf (t ))={
0 ,|WWf |≤T W

(|WWf|−T w)/2⋅T W ,|WWf|∈{T W ,3⋅T w}

1 ,|WWf|≥3⋅T W

(20)

β  itself calculates as a threshold comparator from the
contributions  factor  θ(t) ,  with  smoothed  transient
from 0 to 1. 

β(t)={
0 ,θ(t)≥T u

1
2 [cos(θ(t )−T s

T u−T s

⋅π)+1] ,T s<θ(t)<T u

1 ,θ(t)≤T s

(21)

Where T s =standard deviation of Wf , T u = 3⋅T s , T w

=median  ( WWf ).  In  β ,  “zero”  indicates  unstable
status and “one” steady-state condition. For details, see
(Jiang  et  al.,2003b) and  for  advanced  end-of-steady-
state-detection see (Korbel et al.,2014). 
(Jiang et al.,2003b) demonstrates steady-state detection
but does not focus on online implementation. It may
look straightforward to perform the analysis continu-
ously on a window of past  samples.  Practical imple-
mentations for this thesis showed the correct choice of
the limits T s , T u  and T w  often fails when consider-
ing  only one  window.  The  median  especially  moves
quite arbitrarily.  Therefore,  limits are calculated non-
causally by using the full data set. This proves the con-
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siderations  of  Korbel  (Korbel  et  al.,2014) who  pro-
poses to choose the limits from past measurements. 

To implement the wavelet test,  the Modelica wavelet
library (Gao et al.,2014) was used. The library is simi-
lar to MATLAB’s wavelet toolbox. Since the Modelica
wavelet  library  does  not  support  online  computation
yet, this study is an offline demonstration only. The li-
brary can be developed further for online computation,
if  issues  regarding  the  initialization  of  buffers,  data
storage and allocation of vector sizes of intermediate
variables are solved. Furthermore, the plotting relies on
Dymola-specific Modelica scripting.

The test makes use of the interpolation routine, defini-
tion  of  a  wavelet  function  and  the  discrete  wavelet
transform:

Wavelet.General.interpL()
Wavelet.Families.wavFunc(Wavelet.Records.wa
vletDefinition());
Wavelet.Transform.dwt());
Results of the test are displayed in Figure 7: From the
original signal, the RMS value is calculated via Park
transformation  using  generator  angular  information.
The RMS value is processed by first and second order
wavelet transformation. They show a clear relationship
to the temporal derivatives. β  is calculated via formu-
las 19-21. The first steady-state condition is detected at
around 0.05 seconds. This assumption is based on the
limits T s , T u  and T w  and may be changed by differ-
ent settings.

In summary,  the wavelet-based method identifies  the
steady-state condition of the base harmonic well for the
example. The signal can not be processed directly but
has to be transformed to a non-periodic representation
(RMS). The time scale for the wavelet transform and
the limits need to be adapted to the model, based on
known prior results. The computational efficiency has
to be questioned critically for the wavelet transform. It
may be improved in a future, real-time capable imple-
mentation of the Modelica library, by use of fast wave-
let algorithms.

5.3 Discrete  Fourier  transformation  based  THD
criterion

In  (Kuhn  et  al.,2015) a  Total  Harmonic  Distortion
based  steady-state  detector  was  proposed.  Its  “signal
model” relies  on the Fourier  spectrum. According to
(Isermann,2006),  Fourier  spectra  are  well  suited  for
identification of periodic, stochastic,  and non-station-
ary properties, and therefore for periodic Steady State
Identification. 

In a first step, a vector of sampled data of the input sig-
nal is decomposed into a discrete amplitude-frequency
spectrum by a short time Discrete Fourier Transform
algorithm. THD is calculated from the spectrum by 3

3 e.g., IEEE Standard 519-2014 (IEEE,2014)

Figure 7: Wavelet based test, results
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THD=√∑h=2

M

A [h⋅f base ]
2

A [ f base]
2

(22)

It is a one-dimensional norm on the M−1  amplitudes
of the harmonics, which is normalized by the ampli-
tude of the base frequency. The phase information and
DC component is not considered. 

Finally, the steady-state test is designed as a normal-
ized “trend checking”, based on ΔTHD :

yTHD=
|THD( t x)−THD(t x−N⋅p )|

max(THD ,ϵ)

yTHD <
?

δ⇒ steady state

(23)

The criterion relies on consecutive evaluations of the
spectra  at  times  t x  and  t x+ΔT . Each  evaluation  is
based on data sets of length N [s] . The time delay be-
tween the two THD windows is defined in proportion
p  of the data set length, where an overlap of 50% is

proposed  for  the  data  sets.  Theoretical  consideration
are derived in section  7.  ϵ  prevents division by zero
and influence of noise at small values of THD . While
THD could be evaluated at every sampling interval, for
efficiency  reasons,  the  Modelica  algorithm  is  only
evaluated every  N⋅p . When the frequency resolution
is  set  to  1/r⋅f base ,  the  total  data  set  length  is
(1+ p)⋅r⋅T base  and evaluated no later than p⋅r⋅T base  af-

ter an event. Example: r=4 p=1/2 →criterion evalua-
tion not later than in 2⋅T base , based on data set length=
6⋅T base .

The main features of the implementation by the Model-
ica block “WithinAbsoluteFFTdomain_THD” were al-
ready discussed in (Kuhn et al.,2015). It is a big advan-
tage of this method, that the AC signal can be taken di-
rectly as an input. There is no need for pre-processing
as RMS or transformation to base band. While the ex-
pected  base  frequency  should  be  given  roughly,  the
Modelica-based algorithm can tune itself to the domi-
nating  peak  in  the  nearby-spectrum.  Also,  the  block
features the option to use the criterion as an indicator
for termination of simulation; the THD is delivered as
a final  result  at  this  steady-state  condition.  No extra
FFT computation is necessary for this, as the computa-

tion of THD and THD-based steady-state criterion rely
on the same FFT data. 

The THD-based criterion was tested with the small grid
example.  Here,  the  criterion  could  NOT  identify
steady-state condition. This shortcoming can be better
understood  from the  plot  of  the  THD in  relation  to
V rms .  in Figure 8, rather than the criterion itself.

As can be seen in the upper plot, the THD is not corre-
lated with the main trend, even at steps. This is a spe-
cial  property  of  the  small  grid  example.  There  exist
higher harmonics because of the rectifier, but they are
in fixed proportion to the base harmonic with fast and
well  damped filter  dynamics on the DC side. There-
fore, normalization of THD by the base amplitude pre-
vents a change of the criterion in this case. Furthermore
it can be proven easily, it gives the same THD if a Δ
on one harmonic amplitude compensates for the ampli-
tude on other.

THD(t 1)=√A1
2
+A2

2
+...

Ab

=THD(t 2)=√ (A1+Δ1)
2
+( A2−Δ2)

2
+...

Ab

(24)

With proper choice of  Δ1  and  Δ2 . Strictly speaking,
for the THD identification according to industrial stan-
dards, no “real” steady-state condition would be neces-
sary here, as the THD does not change. But since it is
not a proper indicator, it is not generally recommended.
But  it  can  be  adapted  to  overcome  the  obstacles  as
shown next.

Adapted  discrete  Fourier  Transformation-based  crite-
rion

In order to overcome the problems of the THD-based
steady-state monitor, the new “THD-similar” criterion
is proposed:

yTHD similar=

max(|A [h⋅f base [t x ]]|
2
−|A [h⋅f base [t x+ΔT ] ]|

2

|A [ f base( t x)]|
2
+ϵ⋅|Anom|

2 )
∀h∈[1.. M ] ,

yTHD similar <
?

δ⇒steady state

(25)

It is also based on the DFT spectrum and is inspired by
the THD criterion, maximum error norm and variation
in base amplitude.  In  contrast  to  THD, also the first
(=base) harmonic is considered. An educated guess of a
factor ϵ  of the nominal base amplitude Anom  prevents
division by zero and smooths the result. The decision
threshold  δ  has to be set based on knowledge from
past results. 

The criterion and parameterization of FFT is discussed
in detail in section 7. It is shown, that this criterion is
well suited for identification of steady-state of dynamic

Figure 8: Investigation on spectrum: THD vs. signal (FFT
window 0.017s)
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systems (1), where unmodeled dynamics are treated as
uniform noise. 

The implementation of the function is based on Within-
AbsoluteFFTdomain_THD, with the same parameters
unless stated otherwise. It shares the benefits with the
THD approach, with little simulation overhead through
the efficient FFT algorithm. As soon as steady-state is
detected, the test on conformance with the standards on
THD can be performed. The quality test is based on the
same FFT data without need for an additional FFT cal-
culation.  Results  analogue  to  Figure  6 are  shown in
Figure 9. 

It can be seen that the steady-state condition is found
reliably,  with  proper detection of  the initial  transient
period. The change in amplitude at 0.3 seconds is de-
tected shortly after the event. 

Lastly, all methods are tested with an example based on
hardware tests.  The top plot  in  Figure  10 shows the
measurement data of a generator connected to an elec-
trical-driven Wing Ice Protection System (WIPS). The
load is increased at 0.15seconds. It can be seen that the
F-like  criterion  detects  the  event,  but  the  output  is
noisy although care was taken for proper parameteriza-

tion. In contrast to this, the beta parameter of wavelet-
based test and THD and THD-similar criterion detect
the event reliably, with high signal-to-noise ratio. 

6 Conclusion
In this paper, procedures for Steady State Identification
were tested with an AC electrical circuit,  with domi-
nant  main  amplitude  and  harmonic  distortion,  and  a
second example. Both methods from literature demand
a mapping of the periodic to non-periodic signals. The
F-like test showed good performance and short delays.
However, it was difficult to parameterize, and detection
was weak. The wavelet-based test was very successful,
but computational overhead and delay is high. Alterna-
tively, an experiment based on a variation of THD was
tested.  The  monitor  can  treat  the  periodic  signal  di-
rectly, at medium computational overhead. The delay is
high but it can be seen as not critical, since evaluation
of THD in steady state is requested. This criterion was
not able to detect a transient period, where the signal
had a fixed ratio of the base amplitude and harmonics.
The THD-similar criterion was designed to also con-
sider the base. Tests were very promising, at medium
efficiency and medium delay. Due to its generality and
efficiency, this method is proposed as the best choice
for the application. The results are summarized in Ta-
ble  1. Any generalization of the methods demands an
investigation with more examples. 

Test Quality of
SSI for the
examples

Pre-operator
needed for

AC 

Delay Computation
Efficiency

F-like bad yes Short high

Wavelet based Very good yes high low

THD criterion Only partial no Medium-high Medium, low if
THD is needed

THD-similar
criterion

good no Medium-high Medium, low if
THD is needed

Table 1: Evaluation matrix of proposed methods
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7 Appendix: parametrization of FFT
and derived measures for detection
of steady-state condition

The following section builds on the results in (Kuhn et
al.,2015) and goes into deeper discussion on the pa-
rameterization of the Discrete Fourier Transformation
needed  for  THD  evaluation,  and  their  influence  on
steady-state detection. Use of Discrete and Fast Fourier
Transformation itself is not discussed here but (Kuhn et
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Figure 9: Investigation on new steady-state criterion vs.
signal (FFT window 0.017s)

Figure 10: Identification of steady-state, based on real test
data
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al.,2015) gave a practical approach to the generation of
Fourier  spectra  in  Modelica.4 Computation  of  FFT
might sound numerically demanding, but efficient rou-
tines  are  available  as  public  domain  software,  or  as
proprietary software down to chip-optimized routines
from Intel and AMD. Cyclic FFT can evaluate the FFT
at each sampling step, where results from earlier com-
putations can be reused rather than freshly computated.
For practical  reasons,  one may not evaluate  the FFT
and THD at every sample, since the convergence of the
signal  may happen within some AC periods,  but  not
within some sampling intervals. 

The FFT algorithm for use by THD calculation is well
parameterized by

• The expected base frequency f base  and num-
ber  of  harmonics  demanded  nharmonics ;  the
maximum frequency in the spectrum f max , FFT

needs to be well above the highest treated har-
monic:  f max , FFT>nharmonics⋅f base ,  where  sample
frequency f s=1 /T s=2⋅f max ,FFT

• The type of window function, (e.g. rectangu-
lar, Hamming or Butterworth)

• The  window  length  N=ns⋅T s=1 / f resolution ,
with the spectral resolution  f resolution  and the
number of sample points ns

(proper anti-aliasing by a low-pass filter is assumed). 

“Windows” transfer the theoretical unlimited data set
to finite length by selection of N samples, where the
signal  is  multiplied  by  the  window  function  before
DFT. Such a window function starts near or at zero,
then increases smoothly to a maximum at the center of
the time series and decreases again (see Figure 11 for a
Hamming window). The theory of DFT implicitly pos-
tulates that the input is periodic, where any waveform
must repeat itself after the window of sampled signals.
This  means,  for  signals  with  sinusoidal  content,  the
Fourier spectra of temporal consecutive windows coin-
cide:  if  the  windows  are  of  length  l p⋅T p ,  and  time
shifted by  r p⋅T p ;  with arbitrary integer numbers  l p

and r p , and wavelength  T p  for each sinusoidal con-
tent p .

4 In the meantime the underlying FFT algorithm found its way into the
Modelica  standard  library  3.2.2  as  tool  independent  implementation
“Modelica.Math.FastFourierTransform.realFFT()”

In the following, the properties of the spectral analysis
are discussed with the purpose of steady-state identifi-
cation. For better understanding, Figure 12 shows two
spectra  of  the  voltage  transient  of  the  small  aircraft
electrical network example: The amplitudes spectrum
on  the  initial  transient  phase  (red)  differs  from  the
spectrum of the settled phase (blue) in amplitude and
distinctiveness of the peak (a sinusoidal oscillation of
infinite length would result in a distinct Dirac impulse).
The example shows that the spectra clearly differ and
can  be  used  for  distinction  of  steady-state  and  non
steady-state. 

The spectrum can be affected by: 

• a)  Smearing  of  peaks,  from  non-periodicity
(energy  conservation  by  Parseval’s  theorem)
or mismatch of period by window length, 

• b) Spectral  leakage,  from convolution of  the
spectrum Χ  by the window’s spectrum W  

• c)  Band restricted  variation and smearing of
peaks, from unmodeled dynamics

Case a) might be used as an indicator for the variation
of the wavelengths, where non-integer  l p  distort the
spectrum. This is not recommended. The exact finding
of the wavelength or phase information is highly prone
to errors. Instead, the discontinuity can be removed by
application  of  a  non-rectangular  window  (Henning
etc.)

Case b) can be seen a requirement on the shape and
length of the window function. For better understand-
ing, the effect of windowing is demonstrated in Figure
13. It shows the windowing the input signal  Χ  (grey
peaks) by “rectangular” window (blue) and a “flattop”
window (green). The width of the window in frequency
domain is indirectly proportional to its length in time
domain. The window type itself is characterized by the
peak flatness (3dB bandwidth) and peak level  of the
sidelobes (see overview of window types in (Heinzel et
al.,2002)). Figure 11: Hamming window
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The convolution of the window with the signal in fre-
quency domain is:

Y (e j ω
)=

1
2 π

∫
−π

π

Χ(e jθ
)W (e j(ω−θ)

)d θ (26)

The following requirements result, to distinguish tight
steady-state and wider non steady-state spectra Χ  of a
signal of type (1):

1) The DFT has to resolve the individual base-
band signals of the spectrum, without overlap-
ping caused by the window; (e.g. in Figure 13,
the adjacent blue wave packs shall not merge).
The window type and length ns⋅T s  have to be
chosen  with  focus  on  their  broadening  and
height of sidelobes.

2) The steady-state and non-steady-state con-
dition in  the basebands of  Χ ,  need to have
distinguishable  amplitudes  in  discrete  Y  as
well: The discretization of (26) at a given sam-
pling rate f s  results in

Y [k ]=Y (e j ω
)|ωk=(2π/ N)k

=
1

2 π
∫
−π

π

Χ(e j θ
)W (e j(ω−θ)

)d θ|
ωk=(2π/N )k

,

k=0.. N−1

(27)

2)  is  similar  to  1),  but  includes  a  further  demand:
Y [k ]  may not be undifferentiated for the shapes of Χ

with the same local area c: 

∫
(2π/N )(k−1/2)

(2π /N)(k +1/2 )

Χ(e j ω
)dω=c (28)

.  This  can be the  case with  flat  top windows which
makes  them  not  favourable  for  the  purpose  of
identification  of  band  restricted  disturbances:  They
exhibit broad peaks, with 3dBwidths starting from 2.9
bins. This gives them an approximate characteristics of
W (e jω

)=1  in the interval around a discretized angular
velocity  ωk=(2 π/N)k±1 /2  (called  “bin”).  This
certainly has benefits for the correct identification of

amplitudes, in case of a frequency mismatch of signal
and  discretized  frequency;  but  overlapping  and
visibility of narrow banded effects had to be prevented
by high  spectral  resolution  and therefore  be paid  by
large window lengths.
Case c) is by wide the most interesting effect. Steady
-state identification can be based on prior knowledge,
with measures from a single spectrum. Measures are
the  amplitudes  of  the  main  peaks,  or  their  (3dB)
widths, or their amplitude to  width ratio, or the ratios
of  the  main  peaks.  Or  it  can  also  be  based  on  the
temporal change of these measures. For this work, we
assume  there  is  little  information  on  the  spectrum
given.  Furthermore,  there  is  no  need  to  tune  the
algorithm  for  a  special  spectral  shape,  since  any
distinct  change  is  seen  as  non-periodic  condition.
Instead, a measure is proposed based on the variation
of the noise from unmodeled dynamics.
In  the  1970s  a  method  called  “Welch’s  method  of
averaging  modified  periodograms”  was  developed to
improve the accuracy of periodograms. Periodograms
are estimates of the spectral density of a signal. In this
context, “modified” means the window is not of type
“rectangular”.  According  to  (Oppenheim  and
Schafer,1998), the estimate  r ,  of  a  sequence of  K
periodograms is given by

I r (ω)=
1

N U
|Y r(e jω

)|
2 (29)

,  where estimates are  based on non-overlapping data
segments of length  N ,  which are taken from a total
data set length Q  by a window. The correction factor
U normalizes the amplitudes  of  the windows (if  not
already included in Y r ):

U=
1
L
∑
n=0

N−1

(w[n ])2 (30)

Averaging of the K estimates results in the averaged
periodogram

Ī (ω)= 1
K
∑
r=0

K−1

I r(ω) (31)

, respectively 

Ī [k ]= 1
K
∑
r=0

K−1
1

N U
|Y r[k ]|

2
(32)

of  a  discrete  spectrum. In  case  the  properties  of  the
signal  remain  stationary,  and  noise  is  additional  and
uniformly distributed, the variance of Ī (ω)  is reduced
by  a  factor  of  1/K  (Heinzel  et  al.,2002).  Welch
(Welch,1967) proved that other types of windows may
be used with similar reduction in  variance (modified
periodogram).  Also  he  found,  that  HALF-overlapped
windows (see Figure  14)  reduce the variation in  the
spectral  components  approximately  by  an  additional
factor of 2, if this increases the number of windows on
the  data.  More  than  50%  overlap  usually  gives  no
additional  benefit,  since  the  cross-correlation  of  the
windows grows. Detailed considerations on the optimal

Figure 13: Influence of windowing and sampling 

Χ( jω)  (grey): Dirac peaks in continuous Fourier
domain, e.g. from sine and cosine
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usage of the information in relation to window overlap,
are  summarized  in  (Heinzel  et  al.,2002).  The  author
lists 33 types of windows with amplitude flatness and
power  flatness  in  relation  to  overlap  correlation.
Results clearly show, that an overlap of 50% is a good
choice for all windows except the “flat top” windows. 
By Welch’s method it is possible to get better, unbiased
estimates of the spectrum, and therefore better inputs
for THD calculation. Additionally, with the data of the
periodogram  (32),  the  standard  deviation  of  the
estimate can be computed with little extra effort. It is
possible  to  construct  an  F-like  test  upon  these
measures,  where  transition  to  steady  state  can  be
associated  with  decreasing  noise,  and  therefore
decreasing  standard  deviation.  This  is  not
recommended since the large data vector would effect
a  substantial  delay  in  the  steady  state  detection.
Instead, an indicator named `randomness'  (Heinzel et
al.,2002).  is  more  applicable.  It  is  the  ratio  of  the
standard  deviation  to  the  averaged  estimate  of  the
signal,  that  dominates  the  frequency  bin  under
consideration.  “Randomness”  is  near  unity  for
stochastic signals such as noise, and small for coherent
signals such as sinusoidal wave:

‘ randomness ’=
σ( Ī [k ])
E( Ī [k ])

(33)

This “randomness” criterion is proposed as base of the
THD-similar steady-state detector. Since reduction of
delay is of highest interest, the set of input data must be
kept  short.  This  directly  results  in  a  number  of  2
windows,  with  an  overlap  of  50%  (more  windows
might be used to filter noise). The choice of only two
windows  transforms  the  σ( Ī [k ])  operator  into  a
Δ( I [k])  operator. Δ( I [k])  is evaluated per “bin” [k]

. Since any variation can be seen as “non steady-state”,
it is sufficient to map the data vector to a single value
by a maximum norm. (Euclidean norm might work as
well, with smoother output). The criterion can be made
less prone to noise if the variances [k] are normalized
by the expectation value of the main amplitude, rather
than the expectation value [k]. This results in

yrandomness=max(|A [ k [ t x ]]|
2
−|A [k [ t x+ΔT ]]|

2

|A [ kbase(t x )]|
2 )∀ k

(34)

The SSI delay needs to be kept to a minimum, where
delay is proportional to the window length, which in
turn  is  proportional  to  the  resolution  of  the  DFT
spectrum. The minimum delay is attained, when each
band restricted variation is included by one bin each,
but the window is not “flat top” whilst the resolution is
high  enough  to  prevent  overlap  with  the  adjacent
harmonic  by  the  window.  Since  we  assume  that  all
non-steady-state-caused  distortion  is  centered  around
the base-frequency and the harmonics, the set of all k
in  criterion  (34)  can  be  limited  to  all  bins  which
represent a harmonic of f base . With the usual notation
of  expressing  the  number  of  the  bins  by  their
equivalent frequency, the  k s in (34) are replaced by
k=h⋅f base , with h=[1.. M ] . Inserting an additional ϵ

in  the  denominator  to  prevent  division  by  zero  and
influence of noise directly results in

yTHD−similar=

max(|A [h⋅f base [t x ]]|
2
−|A [h⋅f base [t x+ΔT ] ]|

2

|A [ f base( t x)]|
2
+ϵ⋅|Anom|

2 )
∀ h∈[1.. M ]

(35)

The windows of type Bartlett,  Hamming or Hanning
are  especially  recommended  due  to  their  small  3dB
peak  width  of  1.2736,1.3008  and  1.4382  bins.  For
these windows the resolution of the spectrum should be
at least 1/3⋅f base  to prevent overlap. 

Figure 14: Segmented signal, with three windows and
50% overlap
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