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Abstract 
Several new algorithms are proposed that in effect 
transform DAEs (Differential Algebraic Equations) to 
a special index one form that can be simulated with 
standard DAE integrators. The transformation to this 
form is performed without solving linear and/or 
nonlinear equation systems, the sparsity of the 
equations is kept, and array equations remain array 
equations or differentiated versions of them. 
Furthermore, certain DAEs can be handled where 
structural index reduction methods fail. It is expected 
that these new algorithms will help to treat large 
Modelica models of any index in a better way as it is 
currently possible. The algorithms have been evaluated 
and tested in the experimental simulation environment 
Modia that is implemented with the Julia programming 
language.  
Keywords: Modelica, Modia, Julia, DAE, sparse DAE, 
large DAE, Pantelides algorithm, Dummy Derivative 
Method. 

1 Introduction 
The objective is to handle larger Modelica models as it 
is practically possible today. For this purpose new 
algorithms have been developed: equations as well as 
variables are not scalarized but keep their original array 
types, even if differentiated. This gives a more compact 
code which is a benefit with regards to code cache 
behavior. Furthermore, there is a possibility to utilize 
vector instructions of modern processors. With respect 
to current Modelica tools, equation systems are not 
solved locally in the model code but by a DAE solver 
where the sparsity of the Jacobian is taken into account 
and in the model code single (array) equations are 
either explicitly solved if this is possible or residues for 
implicit equations are computed to be solved by the 
DAE solver. The new algorithms have been evaluated 
and tested in the prototype Modia (Elmqvist et al., 
2016, Elmqvist et al., 2017) which is implemented with 
the Julia programming language1 (Bezanson et al., 
2017) and takes advantage of this very promising 
language effort with focus on scientific computing. 
Modia is available from https://github.com/ModiaSim. 
                                                        
1 http://julialang.org/ 

2 Special Index One DAE Form 
The goal is to simulate physical models that are 
described by a modeling language such as Modelica 
and mapped to a DAE in the form 

𝐟𝐟0(𝐱̇𝐱𝑑𝑑0, 𝐱𝐱𝑑𝑑0, 𝐱𝐱𝑎𝑎0, 𝑡𝑡) = 𝟎𝟎 (1) 
𝐟𝐟0 ∈ ℝ𝑛𝑛𝑛𝑛0 × ℝ𝑛𝑛𝑛𝑛0 × ℝ𝑛𝑛𝑛𝑛0 × ℝ → ℝ𝑛𝑛𝑛𝑛0+𝑛𝑛𝑛𝑛0  

where 𝐱𝐱𝑑𝑑0(𝑡𝑡) are variables that appear differentiated 
and 𝐱𝐱𝑎𝑎0(𝑡𝑡) are variables that do not appear 
differentiated. Furthermore, it is assumed that a unique 
solution of this DAE exists if consistent initial 
conditions of 𝐱̇𝐱𝑑𝑑0, 𝐱𝐱𝑑𝑑0, 𝐱𝐱𝑎𝑎0 are given, and that the 
equations and variables are smoothly differentiable 
sufficiently often. Typically, Modelica tools transform 
(1) into ODE (Ordinary Differential Equation) form 
and use ODE or DAE integration methods for the 
solution. In this paper, this is not done because (a) a 
transformation to ODE form may destroy the sparsity 
structure of the equations and (b) requires in general 
solving linear and/or nonlinear algebraic equation 
systems and an implicit integration method will in turn 
solve nonlinear algebraic equation systems as well (so 
a nonlinear solver is called within a nonlinear solver). 
For certain classes of physical models, such as large 3-
dimensional mechanical systems, this approach might 
not be efficient and not reliable. Instead a new 
approach is proposed to transform (1) to the following 
special index one DAE 

𝐟𝐟𝑑𝑑(𝐱̇𝐱, 𝐱𝐱, 𝑡𝑡) = 𝟎𝟎 
𝐟𝐟𝑐𝑐(𝐱𝐱, 𝑡𝑡) = 𝟎𝟎 (2a)  𝐉𝐉 = �

𝜕𝜕𝐟𝐟𝑑𝑑
𝜕𝜕𝐱̇𝐱
𝜕𝜕𝐟𝐟𝑐𝑐
𝜕𝜕𝐱𝐱

�  is regular (2b) 

without solving equation systems. DAE (2) shall have 
an identical solution space as DAE (1) and 𝐱𝐱𝑑𝑑0, 𝐱𝐱𝑎𝑎0 
shall be part of 𝐱𝐱. Note, when differentiating 𝐟𝐟𝑐𝑐(..),  

𝐟𝐟𝑑𝑑(𝐱̇𝐱, 𝐱𝐱, 𝑡𝑡) = 𝟎𝟎 
𝜕𝜕𝐟𝐟𝑐𝑐
𝜕𝜕𝐱𝐱

𝐱̇𝐱 +
𝜕𝜕𝐟𝐟𝑐𝑐
𝜕𝜕𝜕𝜕

= 𝟎𝟎 (3) 

can be solved for 𝐱̇𝐱 because the matrix of partial 
derivatives of (3) with respect to 𝐱̇𝐱 is the Jacobian 𝐉𝐉 of 
(2b) which is regular. This shows that (2) has index 1.  

A number of methods exist for solving system (2) 
numerically. In particular, under mild conditions BDF 
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(Backward Differentiation Formula) methods with 
order 𝑘𝑘 (𝑘𝑘 < 7) and fixed or variable step-size ℎ 
converge with 𝑂𝑂(ℎ𝑘𝑘), see (Brenan et al. 1996) page 
51-54. This means that a DAE integrator like Sundials 
IDA (Hindmarsh et al. 2005) can solve such systems. 

On the other hand, solving (2) with a BDF-method 
requires to solve a nonlinear equation system where the 
inverse of the iteration matrix becomes singular for 
ℎ → 0. (Petzold and Lötstedt, 1986) point out that step 
size selection is difficult if reducing the step size 
makes the iteration matrix ill-conditioned and it is 
proposed to scale elements of the iteration matrix with 
ℎ so that this effect does not occur. In (Arnold, 2016) it 
is shown how this technique can be applied for 
multibody systems. For system (2) scaling with ℎ is 
particularly simple, resulting in two possible ways: 

ℎ𝐟𝐟𝑑𝑑(𝐱̇𝐱, 𝐱𝐱, 𝑡𝑡) = 𝟎𝟎 
𝐟𝐟𝑐𝑐(𝐱𝐱, 𝑡𝑡) = 𝟎𝟎 

(4a)  
𝐟𝐟𝑑𝑑(𝐱̇𝐱, 𝐱𝐱, 𝑡𝑡) = 𝟎𝟎 
1
ℎ
𝐟𝐟𝑐𝑐(𝐱𝐱, 𝑡𝑡) = 𝟎𝟎 

(4b) 

Assume that these systems are solved with a BDF 
method of order 𝑘𝑘. This means that the derivatives 𝐱̇𝐱 at 
step 𝑖𝑖 are approximated as: 

𝐱̇𝐱𝑖𝑖 ≈  
𝛼𝛼𝑘𝑘0
ℎ
𝐱𝐱𝑖𝑖 +

1
ℎ
�𝛼𝛼𝑘𝑘𝑘𝑘

𝑗𝑗=𝑘𝑘

𝑗𝑗=1

𝐱𝐱𝑖𝑖−𝑗𝑗 (5) 

where 𝛼𝛼𝑘𝑘𝑘𝑘 are constant coefficients depending on the 
order of the method, ℎ = 𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑖𝑖−1 is the step size and 
the sum ∑𝛼𝛼𝑘𝑘𝑘𝑘𝐱𝐱𝑖𝑖−𝑗𝑗 is a known term computed from 
values of 𝐱𝐱 at previous time instants. Inserting (5) in 
(4a) results in a nonlinear system of equations for 𝐱𝐱𝑖𝑖: 

ℎ𝐟𝐟𝑑𝑑 �
𝛼𝛼𝑘𝑘0
ℎ
𝐱𝐱𝑖𝑖 , 𝐱𝐱𝑖𝑖 , 𝑡𝑡𝑖𝑖� = 𝟎𝟎 

𝐟𝐟𝑐𝑐(𝐱𝐱𝑖𝑖 , 𝑡𝑡𝑖𝑖) = 𝟎𝟎 
(6) 

Assume that 𝐱𝐱, 𝐟𝐟𝑑𝑑 , 𝐟𝐟𝑐𝑐 are sufficiently smooth and 
bounded and that 𝐱𝐱𝑖𝑖−1 solves (6) at the previous time 
instant 𝑡𝑡𝑖𝑖−1. According to the implicit function 
theorem, (6) has a unique solution at time instant 
𝑡𝑡𝑖𝑖−1 + ℎ if the inverse of the Jacobian of this system 

𝐉𝐉𝑖𝑖 =

⎣
⎢
⎢
⎢
⎡
𝜕𝜕ℎ𝐟𝐟𝑑𝑑
𝜕𝜕𝐱𝐱𝑖𝑖
𝜕𝜕𝐟𝐟𝑐𝑐
𝜕𝜕𝐱𝐱𝑖𝑖 ⎦

⎥
⎥
⎥
⎤

=  

⎣
⎢
⎢
⎢
⎡𝛼𝛼𝑘𝑘0

𝜕𝜕𝐟𝐟𝑑𝑑
𝜕𝜕𝐱̇𝐱

+ ℎ
𝜕𝜕𝐟𝐟𝑑𝑑
𝜕𝜕𝐱𝐱𝑖𝑖

𝜕𝜕𝐟𝐟𝑐𝑐
𝜕𝜕𝐱𝐱𝑖𝑖 ⎦

⎥
⎥
⎥
⎤
 (7) 

exists for small ℎ. This is indeed the case, since for 
ℎ → 0 the Jacobian (7) converges to the regular 
Jacobian (2b), when dividing the upper equation by the 
constant 𝛼𝛼𝑘𝑘0. A similar result can be derived for (4b). 

To summarize, DAE (2) can be solved by standard 
(index one) DAE integrators and a reliable numerical 
solution with a BDF method can be expected even for 
small step sizes when one of the ℎ scaling methods of 
(4) is used. In the remaining part of this paper it is 
shown, how a large class of DAEs in the form (1) can 
be transformed to (2). This transformation is performed 
in several steps that are discussed now in sequence. 

3 Index Reduction of DAEs 
that have Array Equations 

3.1 Algorithms for Index Reduction 
In order to reduce a DAE (1) to ODE or index one 
form, equations of (1) might need to be differentiated. 
There are in principle many algorithms to perform this 
index reduction based on the structure of the equations, 
that is by the information which variable is present in 
which equation. The essential idea and the key 
algorithm are from (Pantelides, 1988): The structure of 
the equations is described by a bipartite graph of 
equations and variables. The equations are 
differentiated until a complete assignment of the 
highest derivative equations is possible with respect to 
the highest derivative variables (which include 
algebraic variables that are not differentiated). 

Since the goal is to achieve complete assignment in 
a bipartite graph, any matching algorithm for a 
bipartite graph can be used as basis. In (Pantelides, 
1988), the matching algorithm of (Duff, 1981) is 
utilized which results in a very simple and elegant 
implementation. It results in a worst time complexity 
of 𝑂𝑂(𝑛𝑛 ∙ 𝑚𝑚) where 𝑛𝑛 is the number of equations in the 
final system (= original and all differentiated 
equations) and 𝑚𝑚 is the number of entries (incidences) 
in the final bipartite graph. 

In (Duff et al., 2011) eight matching algorithms and 
various additional heuristics are compared. Most of 
them have the same worst time complexity as (Duff, 
1981), a few have 𝑂𝑂(√𝑛𝑛 ∙ 𝑚𝑚). On average the 𝑂𝑂(𝑛𝑛 ∙ 𝑚𝑚) 
algorithm PF+ described in this article had the best 
performance on the test matrices. In (Frenkel et al., 
2012) nine matching algorithms and different 
implementations for structural index reductions are 
compared for multibody examples with varying 
number of bodies. This evaluation indicates that PF+ 
has on average the best performance for index 
reduction with the Pantelides algorithm. 

It is well-known that complete matching in a 
bipartite graph is equivalent to the network flow 
problem where the maximum amount of flow shall be 
determined that can be sent between two given vertices 
of a graph, see for example (Skiena, 2008, page 217). It 
is also well-known that both the network flow problem 
and the bipartite matching problem can be formulated 
as a special linear programming problem, see for 
example (Edmond,1965; Cook and Rohe, 1999; 
Skiena, 2008, pp. 509-510). For all these problem 
classes solution algorithms are available and can be 
used for index reduction. For example, (Pryce, 2001) 
describes an index reduction method based on the 
special linear programming problem. 

All above algorithms for index reduction are 
iterative and the question is when the iteration stops. 
(Pantelides, 1988) provides an elegant method to test 
beforehand whether the (structural) index is finite: 
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Adding the relationship 0 = ℎ𝑖𝑖(𝑥̇𝑥𝑑𝑑0,𝑖𝑖 , 𝑥𝑥𝑑𝑑0,𝑖𝑖) structurally 
for all differentiated variables in (1) gives an extended 
system which can be interpreted as solving (1) with an 
implicit integration method. If this system has a 
complete matching, the (structural) index is finite and 
structural index reduction algorithms will converge. 

All the algorithms mentioned above have the 
disadvantage that only structural properties are utilized 
and therefore will fail if state constraints are not 
structurally visible. In (Chowdhry et al., 2004) a 
symbolic/numeric index reduction procedure is 
proposed. It is based on a symbolic numerical algebra 
for pattern manipulations of the DAE (1) and reduces 
the index of linear constant coefficient DAEs 
numerically by LU decompositions and the index of 
nonlinear parts by a structural index reduction 
algorithm. 

In section 5 a new method is proposed to exactly 
handle singularities in the connection graph of a model, 
both to treat (consistently) underdetermined and 
overdetermined equation systems, as well as state 
constraints that cannot be handled by a structural index 
reduction algorithm. This technique transforms a DAE 
(1) in a DAE (1) and is therefore a pre-processing step 
for the transformations of section 3 and 4. 

3.2 Index Reduction on Array Equations 
The Pantelides algorithm and other structural index 
reduction algorithms are designed for scalar variables 
and equations. So Modelica tools typically 
symbolically expand array equations into a set of scalar 
equations involving the array elements and the 
description with array equations is lost. This has 
significant drawbacks for large array equations. In 
(Schuchart, et al., 2015) it is shown how special for-
loops can be handled so that they need not to be 
expanded for the Pantelides algorithm and are retained 
in the generated code.  

Below, a new technique is proposed to handle any 
kind of array equations. Hereby the (conceptual) 
expansion of array equations is performed only in the 
bipartite graph to perform structural index reduction 
and in a BLT (Block Lower Triangular) transformation 
on the highest derivative equations. In order to 
illustrate this technique, a tiny multibody example will 
be used. 

Consider the following model of a sliding mass. It is 
a one degree-of-freedom model, with scalar parameters 
c,d,𝑚𝑚, vector parameters 𝐧𝐧, 𝐠𝐠, scalar unknown 𝑠𝑠 and 
vector unknowns 𝐫𝐫, 𝐯𝐯, 𝐟𝐟,𝐮𝐮, that is described by the 
following equations: 

𝐫𝐫 = 𝐧𝐧𝑠𝑠 
𝐯𝐯 = 𝐫̇𝐫 

𝑚𝑚𝐯̇𝐯 = 𝐟𝐟 + 𝑚𝑚𝐠𝐠 + 𝐮𝐮 
0 = 𝐧𝐧 ∙ 𝐟𝐟 
𝐮𝐮 = −(𝑐𝑐𝑐𝑐 + 𝑑𝑑𝑠̇𝑠)𝐧𝐧 

(8) 

(8) is a DAE (1) with 4 ∙ 3 + 1 = 13 equations in the 
13 variables 𝐱𝐱𝑑𝑑0 = [𝑠𝑠; 𝐫𝐫; 𝐯𝐯], 𝐱𝐱𝑎𝑎0 = [𝐟𝐟;𝐮𝐮]. 

With the Pantelides algorithm it is determined how 
often every equation would have to be differentiated 
until the highest derivatives variables can be uniquely 
assigned to the highest derivative equations. Since we 
want to keep array equations intact, it is natural to 
assign array variables to array equations, provided they 
have the same type and the same dimensions. See also 
(Stavåker, 2015) chapter 9. However, this does not 
work for the sliding mass example above and any other 
multibody system where bodies are connected by 
joints. 

The scalar variable 𝑠𝑠 appears only in vector 
equations, so 𝑠𝑠 or a higher derivative of it can only be 
assigned to an element of these equation (or a 
derivative of them), which means that a vector 
equation must be expanded in scalar equations. 
Furthermore, the vector variable 𝐟𝐟 appears as only 
variable in a scalar equation (0 = 𝐧𝐧 ∙ 𝐟𝐟) and therefore 
one element of 𝐟𝐟 must be assigned to this scalar 
equation. As a result, the two other elements of 𝐟𝐟 have 
to be assigned in other equations, which then must be 
expanded as well. In the end, all equations must be 
expanded to scalar equations in order that an 
assignment of all variables is possible. 

After expanding all equation graphs, the Pantelides 
algorithm determines that the first vector equations 
must be differentiated twice and the second one time 
leading to the following assignments: 

assigned highest derivative equations diff. order 
𝑠̈𝑠 𝑟̈𝑟1 = 𝑛𝑛1𝑠̈𝑠 2 
𝑟̈𝑟2 𝑟̈𝑟2 = 𝑛𝑛2𝑠̈𝑠 2 
𝑟̈𝑟3 𝑟̈𝑟3 = 𝑛𝑛3𝑠̈𝑠 2 
𝑟̈𝑟1 𝑣̇𝑣1 = 𝑟̈𝑟1 1 
𝑣̇𝑣2 𝑣̇𝑣2 = 𝑟̈𝑟2 1 
𝑣̇𝑣3 𝑣̇𝑣3 = 𝑟̈𝑟3 1 
𝑣̇𝑣1 𝑚𝑚𝑣̇𝑣1 = 𝑓𝑓1 + 𝑚𝑚𝑔𝑔1 + 𝑢𝑢1 0 
𝑓𝑓2 𝑚𝑚𝑣̇𝑣2 = 𝑓𝑓2 + 𝑚𝑚𝑔𝑔2 + 𝑢𝑢2 0 
𝑓𝑓3 𝑚𝑚𝑣̇𝑣3 = 𝑓𝑓3 + 𝑚𝑚𝑔𝑔3 + 𝑢𝑢3 0 
𝑓𝑓1 0 = 𝑛𝑛1𝑓𝑓1 + 𝑛𝑛2𝑓𝑓2 + 𝑛𝑛3𝑓𝑓3 0 
𝑢𝑢1 𝑢𝑢1 = −(𝑐𝑐𝑐𝑐 + 𝑑𝑑𝑠̇𝑠) 𝑛𝑛1 0 
𝑢𝑢2 𝑢𝑢2 = −(𝑐𝑐𝑐𝑐 + 𝑑𝑑𝑠̇𝑠) 𝑛𝑛2 0 
𝑢𝑢3 𝑢𝑢3 = −(𝑐𝑐𝑐𝑐 + 𝑑𝑑𝑠̇𝑠) 𝑛𝑛3 0 

As will become clear in section 4, the set of highest 
derivative equations must be sorted, so a BLT (Block 
Lower Triangular) transformation must be applied that 
identifies the order of evaluation, as well as the 
algebraic loops under the assumption that the lower-
order derivative variables are known. Furthermore, the 
assumption is used that array equations have full 
incidence (see Assumption 1 below).  
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highest derivative equations solve for 
𝑢𝑢1 = −(𝑐𝑐𝑐𝑐 + 𝑑𝑑𝑠̇𝑠) 𝑛𝑛1 
𝑢𝑢2 = −(𝑐𝑐𝑐𝑐 + 𝑑𝑑𝑠̇𝑠) 𝑛𝑛2 
𝑢𝑢3 = −(𝑐𝑐𝑐𝑐 + 𝑑𝑑𝑠̇𝑠) 𝑛𝑛3 

𝑢𝑢1,𝑢𝑢2,𝑢𝑢3 

𝑟̈𝑟1 = 𝑛𝑛1𝑠̈𝑠 
𝑟̈𝑟2 = 𝑛𝑛2𝑠̈𝑠 
𝑟̈𝑟3 = 𝑛𝑛3𝑠̈𝑠 
𝑣̇𝑣1 = 𝑟̈𝑟1 
𝑣̇𝑣2 = 𝑟̈𝑟2 
𝑣̇𝑣3 = 𝑟̈𝑟3 

𝑚𝑚𝑣̇𝑣1 = 𝑓𝑓1 + 𝑚𝑚𝑔𝑔1 + 𝑢𝑢1 
𝑚𝑚𝑣̇𝑣2 = 𝑓𝑓2 + 𝑚𝑚𝑔𝑔2 + 𝑢𝑢2 
𝑚𝑚𝑣̇𝑣3 = 𝑓𝑓3 + 𝑚𝑚𝑔𝑔3 + 𝑢𝑢3 

0 = 𝑛𝑛1𝑓𝑓1 + 𝑛𝑛2𝑓𝑓2 + 𝑛𝑛3𝑓𝑓3 

𝑠̈𝑠, 𝑟̈𝑟1, 𝑟̈𝑟2, 𝑟̈𝑟3, 
𝑣̇𝑣1, 𝑣̇𝑣2, 𝑣̇𝑣3, 
𝑓𝑓1, 𝑓𝑓2, 𝑓𝑓3 

 

The result is that there is an algebraic system with 3 
equations that has to be solved for 3 unknowns. 
Afterwards an algebraic equation system with 10 
equations has to be solved for 10 unknowns. Note, 
whenever an algebraic loop is encountered, the 
previous assignment information on equation level is 
no longer relevant (which is anyway not unique in such 
a case) but only the set of unknown variables of the 
respective algebraic loop. 

Although the Pantelides algorithm must be 
performed on (conceptually) expanded scalar equations 
and scalar variables, the BLT transformed highest 
derivative equations can be contracted to array 
equations again: 

highest derivative equations solve for 
𝐮𝐮 = −(𝑐𝑐𝑐𝑐 + 𝑑𝑑𝑠̇𝑠)𝐧𝐧 𝐮𝐮 
𝐫̈𝐫 = 𝐧𝐧𝑠̈𝑠 
𝐯̇𝐯 = 𝐫̈𝐫 

𝑚𝑚𝐯̇𝐯 = 𝐟𝐟 + 𝑚𝑚𝐠𝐠 + 𝐮𝐮 
0 = 𝐧𝐧 ∙ 𝐟𝐟 

𝑠̈𝑠, 𝐫̈𝐫, 𝐯̇𝐯, 𝐟𝐟 

The original Pantelides algorithm and the BLT 
transformation are graph based algorithms that assume 
nodes and vertices correspond to scalar real variables 
and equations. These algorithms can be generalized to 
work directly on the array variables and equations. 

3.3 Properties of Array Equations 
The presented approach relies on the fact that all 
scalarized equations/variables appear in the same 
algebraic equation system (or more precisely in the 
same strongly connected component of a directed 
graph). This sub-section contains the assumption under 
which this property holds and the proof of the property. 
Multi-dimensional arrays are treated as vectors with 
length being the total number of elements.  
Assumption 1: When expanding the bipartite graph of 
DAE (1) regarding array variables and array 
equations, it is assumed that they have full incidence.  
Example: For the equation 𝐞𝐞:   𝐰𝐰 = 𝐟𝐟(𝐮𝐮,𝐯𝐯) with all 
variables being vectors of length 2, the incidence 
structure is assumed to be: 

 𝑤𝑤1 𝑤𝑤2 𝑢𝑢1 𝑢𝑢2 𝑣𝑣1 𝑣𝑣2 
𝑒𝑒1 x x x x x x 
𝑒𝑒2 x x x x x x 

Theorem 1: If one element of an array equation needs 
to be differentiated, all elements of all time varying 
variables in the equation need to be differentiated. 
Example: For the equation 𝐞𝐞:   𝐰𝐰 = 𝐟𝐟(𝐯𝐯) with all 
variables being vectors of length 2, the incidence 
structure of the differentiated equation is: 

 𝑤𝑤1 𝑤𝑤2 𝑤̇𝑤1 𝑤̇𝑤2 𝑣𝑣1 𝑣𝑣2 𝑣̇𝑣1 𝑣̇𝑣2 
𝑒̇𝑒1 x x x x x x x x 
𝑒̇𝑒2 x x x x x x x x 

Proof: This follows since if an array variable has full 
incidence, so has its time derivative. This means that 
derivatives of all time varying array variable elements 
will appear in the differentiated element of the array 
equation. ∎ 

This is consistent with the Pantelides algorithm 
because, if the function augmentPath returns false, all 
variable elements with incidence are marked as 
colored. All colored V-nodes to be differentiated are 
then marked in the A vector. 

Theorem 2: If one element of an array equation needs 
to be differentiated, all other elements of the equation 
need to be differentiated.  
Proof: According to Theorem 3, all elements of an 
array equation will appear in the same strongly 
connected component. It means that there is a mutual 
dependency between all array equation elements. This 
means that there is also a mutual dependency between 
all differentiated array variable elements. In order to be 
able to solve for all derivatives, an equal number of 
array equation elements are needed, that is all array 
equation elements must be differentiated. ∎ 

Function augmentPath colors all equations visited. If 
assignment is not possible, augmentPath tries to 
reassign. Due to the mutual dependency, all of the 
elements of an array equation are visited. In the B-
vector of the Pantelides algorithm it is marked that all 
colored equation nodes should be differentiated. 

Theorem 3: If the highest derivative equations are 
structurally non-singular with respect to the highest 
derivative variables, all elements of an array equation 
will appear in the same strongly connected component. 
Proof: The incidence matrix of an array equation 
consists of n identical rows with n being the number of 
scalar elements of the left and right hand side. Assume 
that these elements of the array equation (incidence 
matrix rows) appear in different strongly connected 
components. This would mean that some of these 
elements of the array equation could be solved without 
the others. Since they have the same incidence, it 
would mean that the other elements of the array 
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equation would be structurally over-constrained. This 
contradicts the assumption of structural non- 
singularity. ∎ 

Limitations 
It is worth noting that there are cases when symbolic 
expansion of array equations is beneficial. For 
example, (Elmqvist and Mattsson, 2016) discusses 
detection and handling of planar loops of multibody 
systems. In such cases, certain elements of position 
vectors are overdetermined and certain elements of 
force vectors are underdetermined. In order to reveal 
this, the zeros in axis of rotation and translation vectors 
must be utilized, that is, certain equations must be 
expanded. 

When discretized partial differential equations are 
handled, the boundary elements may give rise to issues 
with Assumption 1. In such a case, array equations for 
the inner elements might be formulated and scalar 
equations for the boundary elements added separately. 

3.4 Implementation Notes 
The Pantelides and BLT algorithms have as input the 
incidence graph for the array variables and equations, 
that is, non-expanded equation and array structure. 
Additionally, a vector of lengths of each variable, that 
is the number of scalar elements, and a vector of the 
lengths of equations are given as inputs.  

All for-loops over variables and equations in the 
original algorithms are replaced with nested for loops 
also looping over the lengths. 

The usual indices in the assignment, lowlink and 
number vectors and stack are replaced by tuples 
denoting which array and which array element is 
referred to. However, due to Theorem 1, the 𝐀𝐀 vector 
(see below) which tells which variables are 
differentiated is still just a vector over array variables. 
Similarly, due to Theorem 2, the 𝐁𝐁 vector (see below) 
for differentiated equations does not need the tuple 
indexing. The strongly connected component 
representation is only referring to array equations due 
to Theorem 3. 

3.5 Result of Structural Index Reduction and BLT 
For the further processing, the result of the structural 
index reduction and BLT transformation of array 
equations is summarized formally. For this, the 
following notation is used 
• All symbols are collected in a variable vector 𝐯𝐯 

and 𝑣𝑣𝑗𝑗 is symbol 𝑗𝑗. A symbol may represent a 
scalar or an array. 𝑉𝑉𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ,𝑗𝑗 gives the number of 
elements of symbol 𝑗𝑗. 

• All equations are collected in an equation vector 𝐞𝐞 
and 𝑒𝑒𝑖𝑖 is equation 𝑖𝑖. An equation may be a scalar 
or an array equation. 𝐸𝐸𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ,𝑖𝑖 gives the number of 
elements of equation 𝑖𝑖. 

• The relationship between the symbols is defined 
by the variable association vector 𝐀𝐀, such that:  
   𝐴𝐴𝑗𝑗 = 𝐢𝐢𝐢𝐢 𝑣̇𝑣𝑗𝑗 = 𝑣𝑣𝑘𝑘 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 𝑘𝑘 𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞 0. 
Also the inverse relationship is needed below:  
   𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖,𝑘𝑘 = 𝐢𝐢𝐢𝐢 𝑣̇𝑣𝑗𝑗 = 𝑣𝑣𝑘𝑘 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 𝑗𝑗 𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞 0. 

• The relationship between the equations is defined 
by the equation association vector 𝐁𝐁, such that: 
   𝐵𝐵𝑖𝑖 = 𝐢𝐢𝐢𝐢 𝑒̇𝑒𝑖𝑖 = 𝑒𝑒𝑘𝑘 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 𝑘𝑘 𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞 0. 
Also the inverse relationship is needed below:  
   𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖,𝑘𝑘 = 𝐢𝐢𝐢𝐢 𝑒̇𝑒𝑖𝑖 = 𝑒𝑒𝑘𝑘 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 𝑖𝑖 𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞 0. 

Starting point is DAE (1) that can be defined with 
𝐯𝐯0 = [𝐱̇𝐱𝑑𝑑0; 𝐱𝐱𝑑𝑑0; 𝐱𝐱𝑎𝑎0] and the 𝑛𝑛𝑒𝑒0 array equations: 

𝐞𝐞0(𝐯𝐯0, 𝑡𝑡) = 𝟎𝟎 (9) 
Structural index reduction determines the minimal 
number of differentiations of (9) such that the 
following conditions are fulfilled by the final system: 
𝑒𝑒𝑖𝑖�𝑣𝑣𝑗𝑗 , 𝑡𝑡� = 0;   𝐵𝐵𝑖𝑖 = 0;    𝐴𝐴𝑗𝑗 ≥ 0   
𝑒𝑒𝑘𝑘�𝑣𝑣𝑗𝑗 , 𝑡𝑡� = 0;   𝐵𝐵𝑘𝑘 > 0;   𝐴𝐴𝑗𝑗 > 0 

       
𝜕𝜕𝑒𝑒𝑖𝑖
𝜕𝜕𝑣𝑣𝑗𝑗

 structurally regular for 𝐴𝐴𝑗𝑗 = 0 

(10a) 
(10b) 

(10c) 

(10a) are 𝑛𝑛𝑒𝑒0 array equations (the highest derivative 
equations) in 𝑛𝑛𝑒𝑒0 unknown arrays (the highest 
derivative variables 𝑣𝑣𝑗𝑗 with 𝐴𝐴𝑗𝑗 = 0). The matrix (10c) 
of partial derivatives of the highest derivative 
equations with respect to the highest derivative 
variables is structurally regular. (10b) are 𝑛𝑛𝑒𝑒 − 𝑛𝑛𝑒𝑒0 
array equations describing the constraints between the 
variables appearing differentiated. The highest 
derivative variables (that is 𝑣𝑣𝑗𝑗 with 𝐴𝐴𝑗𝑗 = 0), do not 
appear in these equations. 

4 Transformation to Index One Form 
4.1 Overview 
The transformation from (1) to index one form (2) 
using (10) is made in three steps: In a first step, the 
solution is sketched for multibody system equations. In 
a second step this approach is generalized and in a final 
step the transformation is made more efficient by 
partial static state selection. 

In the field of multibody systems, constraints appear 
in nearly every model and hence multibody programs 
need to inherently cope with the special constraints 
appearing in 3-dimensional mechanical systems. It is 
therefore natural to inspect the many solution methods 
developed for multibody systems and try to generalize 
one or more of them to general DAEs (1). In the recent 
report (Arnold, 2016), a very broad and nice overview 
of the current state of the art for simulation of 
multibody systems is given and used as basis of this 
section. 

One solution method is to integrate the highest 
derivative equations (10a) and when the violation of 
the constraints (10b) becomes too large project on the 
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constraint manifold, see for example (Ascher and 
Petzold, 1991; Eich, 1993). Such methods could be 
implemented by utilizing an implicit one-step DAE 
integrator and after every step project the solution on 
the constraint manifold. 

Many industrial applications of Modelica models are 
best solved with an implicit multistep method. 
Unfortunately, multistep methods require non-trivial 
modifications to embed a projection method because 
the solution is interpolated smoothly over several steps 
and (potentially) in every step the solution is modified 
in a discontinuous way by a projection. It seems that 
the stabilized index-2 formulation according to Gear, 
Gupta, Leimkuhler (Gear et al., 1985) is a more 
attractive starting point especially for multistep 
methods. This method is analyzed in the sequel in 
some detail. The presentation is made in such a way 
that a generalization is straightforward. 

4.2 Transformation of Multibody Equations 
Starting point is the following set of equations for a 
multibody system: 

𝒒̇𝒒 = 𝒗𝒗 
𝐌𝐌(𝒒𝒒, 𝑡𝑡)𝒗̇𝒗 + 𝐆𝐆𝑇𝑇(𝒒𝒒, 𝑡𝑡)𝝀𝝀 = 𝒉𝒉(𝒒𝒒,𝒗𝒗, 𝑡𝑡) 

𝟎𝟎 = 𝒈𝒈(𝒒𝒒, 𝑡𝑡) 

(11a) 
(11b) 
(11c) 

with 

𝐆𝐆 =
𝜕𝜕𝒈𝒈
𝜕𝜕𝒒𝒒

 , 𝐌𝐌 = 𝐌𝐌𝑇𝑇 > 𝟎𝟎 (11d) 

It is assumed that 𝐆𝐆 has full row rank that is the 
constraints equations (11c) are not redundant. (11) has 
𝑛𝑛𝑞𝑞 + 𝑛𝑛𝑣𝑣 + 𝑛𝑛𝜆𝜆 real unknowns 𝒒̇𝒒, 𝒗̇𝒗,𝝀𝝀 for the same 
number of equations. With the new array version of the 
Pantelides algorithm, equation (11a) is differentiated 
once and equation (11c) twice in order to arrive at the 
following equation system that needs to be fulfilled by 
consistent initial values  𝒒𝒒0,𝒗𝒗0,𝝀𝝀0, 𝒒̇𝒒0, 𝒒̈𝒒0, 𝒗̇𝒗0: 

𝒒̇𝒒 = 𝒗𝒗 
𝐌𝐌𝒗̇𝒗 + 𝐆𝐆𝑇𝑇𝝀𝝀 = 𝒉𝒉(𝒒𝒒,𝒗𝒗, 𝑡𝑡) 

𝟎𝟎 = 𝒈𝒈(𝒒𝒒, 𝑡𝑡) 
𝟎𝟎 = 𝐆𝐆 𝒒̇𝒒 + 𝒈𝒈(1)(𝒒𝒒, 𝑡𝑡) 
𝟎𝟎 = 𝐆𝐆 𝒒̈𝒒 + 𝒈𝒈(2)(𝒒𝒒, 𝒒̇𝒒, 𝑡𝑡) 
𝒒̈𝒒 =  𝒗̇𝒗 

(12a) 
(12b) 
(12c) 
(12d) 
(12e) 
(12f) 

with 

 𝒈𝒈(1) =
∂𝐠𝐠
∂t

,    𝒈𝒈(2) =  𝐆̇𝐆 𝒒̇𝒒 + 𝒈̇𝒈(1) (12g) 

This is an ODAE (Overdetermined Differential 
Algebraic Equation) with 2𝑛𝑛𝑞𝑞 + 𝑛𝑛𝑣𝑣 + 3𝑛𝑛𝜆𝜆 equations 
for the 2𝑛𝑛𝑞𝑞 + 𝑛𝑛𝑣𝑣 + 𝑛𝑛𝜆𝜆 unknowns 𝒒̇𝒒, 𝒒̈𝒒, 𝒗̇𝒗,𝝀𝝀. In order to 
arrive at an equation system with the same number of 
unknowns and equations that are consistent (so locally 
a unique solution exists), the following approach of 
(Gear et al., 1985) is used: 

𝟎𝟎 = 𝒒̇𝒒 − 𝒗𝒗 + 𝐆𝐆𝑇𝑇𝝁𝝁 
𝟎𝟎 = 𝐌𝐌 𝒗̇𝒗 + 𝐆𝐆𝑇𝑇 𝝀𝝀 − 𝒉𝒉(𝒒𝒒,𝒗𝒗, 𝑡𝑡) 
𝟎𝟎 = 𝒈𝒈(𝒒𝒒, 𝑡𝑡) 
𝟎𝟎 = 𝐆𝐆 𝒗𝒗 + 𝒈𝒈(1)(𝒒𝒒, 𝑡𝑡) 

(13a) 
(13b) 
(13c) 
(13d) 

These are 𝑛𝑛𝑞𝑞 + 𝑛𝑛𝑣𝑣 + 2𝑛𝑛𝜆𝜆 residue equations for the 
𝑛𝑛𝑞𝑞 + 𝑛𝑛𝑣𝑣 + 2𝑛𝑛𝜆𝜆 unknowns 𝒒̇𝒒, 𝒗̇𝒗,𝝀𝝀,𝝁𝝁, so the number of 
equations and number of unknowns is the same. (13) 
has a differential index of two and has the same 
solution as (12) because it can be shown that 𝝁𝝁 =  𝟎𝟎: 
Inserting equation (13a) in equation (13d): 

𝟎𝟎 = 𝐆𝐆 (𝒒̇𝒒 + 𝐆𝐆𝑇𝑇 𝝁𝝁) + 𝒈𝒈(1)(𝒒𝒒, 𝑡𝑡) 
and subtracting the derivative of (13c) results in the 
equation 𝟎𝟎 = 𝐆𝐆 𝐆𝐆𝑇𝑇𝝁𝝁. Provided 𝐆𝐆 has full row rank, 
𝐆𝐆 𝐆𝐆𝑇𝑇 is regular and therefore 𝝁𝝁 = 𝟎𝟎. ∎ 

This scheme can be easily generalized. For example 
assume that (say due to an inverse model) the third 
derivative of (12c) is needed. Then, new 𝝁𝝁2 variables 
and corresponding dummy derivatives are introduced 
in combination with the second derivatives of the 
constraints: 

𝒘𝒘 =  𝒗̇𝒗 + 𝐆𝐆𝑇𝑇 𝝁𝝁2 
𝟎𝟎 = 𝐆𝐆𝒘𝒘 + 𝒈𝒈(2)(𝒒𝒒,𝒗𝒗, 𝑡𝑡) 

With the same argument as before it can be shown that 
𝝁𝝁2 = 𝟎𝟎: Inserting 𝒘𝒘 in the second equation and 
subtracting the differentiated equation (13d) results in 
𝟎𝟎 = 𝐆𝐆 𝐆𝐆𝑇𝑇𝝁𝝁2 and therefore 𝝁𝝁2 =  𝟎𝟎. ∎ 

In (Gear et al., 1985) it is shown that variable-step 
and variable order BDF (Backward Differentiation 
Formula) methods converge for this index-2 DAE. 
However, (13) is not yet in the desired form (2). In 
particular, the BDF iteration matrix becomes singular 
for a small step size. (13) can be transformed to (2) by 
using the substitution (Gear, 1988): 

𝛍𝛍 = 𝛍̇𝛍𝑖𝑖𝑖𝑖𝑖𝑖 , 𝛌𝛌 = 𝛌̇𝛌𝑖𝑖𝑖𝑖𝑖𝑖 (14) 
as well as 𝐱𝐱 = [𝐪𝐪; 𝐯𝐯;𝛌𝛌𝑖𝑖𝑖𝑖𝑖𝑖;𝛍𝛍𝑖𝑖𝑖𝑖𝑖𝑖]: 

𝟎𝟎 = �𝐟𝐟𝑑𝑑
(𝐱̇𝐱, 𝐱𝐱, 𝑡𝑡)
𝐟𝐟𝑐𝑐(𝐱𝐱, 𝑡𝑡) � =

⎣
⎢
⎢
⎢
⎡ 𝐪̇𝐪 − 𝐯𝐯 + 𝐆𝐆T𝛍̇𝛍𝑖𝑖𝑖𝑖𝑖𝑖
𝐌𝐌 𝐯̇𝐯 + 𝐆𝐆T 𝛌̇𝛌𝑖𝑖𝑖𝑖𝑖𝑖 − 𝐡𝐡(𝐪𝐪, 𝐯𝐯, 𝑡𝑡)

𝐠𝐠(𝐪𝐪, 𝑡𝑡)
𝐆𝐆 𝐯𝐯 + 𝐠𝐠(1)(𝐪𝐪, 𝑡𝑡) ⎦

⎥
⎥
⎥
⎤
 (15) 

Note, the Jacobian (2b) of (15) is regular (𝐏𝐏 in (16) is a 
permutation matrix to exchange the third and the fourth 
equation of (15) in order that the regularity is at once 
visible): 

𝐉𝐉 = �

𝜕𝜕𝐟𝐟𝑑𝑑
𝜕𝜕𝐱̇𝐱
𝜕𝜕𝐟𝐟𝑐𝑐
𝜕𝜕𝐱𝐱

� = 𝐏𝐏 �
𝐈𝐈 𝟎𝟎 𝟎𝟎 𝐆𝐆𝑇𝑇

𝟎𝟎 𝐌𝐌 𝐆𝐆𝑇𝑇 𝟎𝟎
𝟎𝟎 𝐆𝐆 𝟎𝟎 𝟎𝟎
𝐆𝐆 𝟎𝟎 𝟎𝟎 𝟎𝟎

�  is regular (16) 

4.3 Transformation of general DAEs 
The goal is to transform the ODAE (10) to (2). In a 
first step the elements of vector 𝐱𝐱 are identified: 
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1. All variables 𝑣𝑣𝑗𝑗 that appear differentiated are 
collected together with their derivatives in vector 
𝐱𝐱𝑑𝑑 with exception of their highest derivatives (so 
𝑥𝑥𝑑𝑑,𝑗𝑗 are all variables 𝑣𝑣𝑗𝑗 with 𝐴𝐴𝑗𝑗  > 0). 

2. All variables 𝑣𝑣𝑗𝑗 that do not appear differentiated 
(so 𝑣𝑣𝑗𝑗 with 𝐴𝐴𝑗𝑗 = 0 and 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖,𝑗𝑗 = 0) are collected 
either in vector 𝐱𝐱𝑎𝑎 or vector 𝛌𝛌 = 𝛌̇𝛌𝑖𝑖𝑖𝑖𝑖𝑖 in such a 
way that (a) all assigned variables of every BLT 
block are either only differential variables 
(𝐱̇𝐱𝑑𝑑; 𝛌̇𝛌𝑖𝑖𝑖𝑖𝑖𝑖) or only algebraic (𝐱𝐱𝑎𝑎) variables and (b) a 
BLT block with assigned 𝐱𝐱𝑎𝑎 variables does not 
contain any differential variables (𝐱̇𝐱𝑑𝑑; 𝛌̇𝛌𝑖𝑖𝑖𝑖𝑖𝑖). 

3. New 𝑛𝑛𝜇𝜇 unknown variables 𝛍𝛍𝑖𝑖𝑖𝑖𝑖𝑖 are introduced 
(𝑛𝑛𝜇𝜇 is defined below). 

The index-one DAE (2) can now be defined as: 

𝐱𝐱 = �

𝐱𝐱𝑑𝑑
𝐱𝐱𝑎𝑎
𝛌𝛌𝑖𝑖𝑖𝑖𝑖𝑖
𝛍𝛍𝑖𝑖𝑖𝑖𝑖𝑖

� ,     𝐱̇𝐱 = �

𝐱̇𝐱𝑑𝑑
𝐱̇𝐱𝑎𝑎
𝛌𝛌
𝛍̇𝛍𝑖𝑖𝑖𝑖𝑖𝑖

�   (17a) 

𝟎𝟎 = �𝐟𝐟𝑑𝑑
(𝐱̇𝐱, 𝐱𝐱, 𝑡𝑡)
𝐟𝐟𝑐𝑐(𝐱𝐱, 𝑡𝑡) � 

=

⎣
⎢
⎢
⎢
⎢
⎡𝐱̇𝐱𝑑𝑑𝑑𝑑𝑑𝑑(0:𝑛𝑛−2) − 𝐱𝐱𝑑𝑑𝑑𝑑𝑑𝑑(1:𝑛𝑛−1) + 𝐆𝐆𝑇𝑇𝛍̇𝛍𝑖𝑖𝑖𝑖𝑖𝑖

𝐫𝐫0,𝑑𝑑

𝐫𝐫0,𝑎𝑎
𝐫𝐫𝐷𝐷𝐷𝐷𝐷𝐷(0)

𝐫𝐫𝐷𝐷𝐷𝐷𝐷𝐷(1:𝑛𝑛−1) = 𝐆𝐆𝐱𝐱𝑑𝑑𝑑𝑑𝑑𝑑(1:𝑛𝑛−1) + 𝐠𝐠 ⎦
⎥
⎥
⎥
⎥
⎤

 
(17b) 

The variables in gray color, that is 𝛌𝛌𝑖𝑖𝑖𝑖𝑖𝑖,𝛍𝛍𝑖𝑖𝑖𝑖𝑖𝑖 , 𝐱̇𝐱𝑎𝑎, are 
not used in equations (17b) and are variables needed 
by the integrator. The different parts of the equations 
are: 
1. The index vectors 𝑑𝑑𝑑𝑑𝑑𝑑(0:𝑛𝑛 − 2),𝑑𝑑𝑑𝑑𝑑𝑑(1:𝑛𝑛 − 1)  are 

defined in such a form that (for 𝛍𝛍𝑖𝑖𝑖𝑖𝑖𝑖 = 𝟎𝟎):  

          𝑑𝑑�𝐱𝐱𝑑𝑑𝑑𝑑𝑑𝑑(0:𝑛𝑛−2)�
𝑑𝑑𝑑𝑑

= 𝐱𝐱𝑑𝑑𝑑𝑑𝑑𝑑(1:𝑛𝑛−1) 

2. 𝐫𝐫0,𝑑𝑑 are non-differentiated equations of (10a), so 
equations 𝑒𝑒𝑖𝑖 with 𝐵𝐵𝑖𝑖 = 0 and 𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖,𝑖𝑖 = 0, that have 
only differentiated variables (𝐱̇𝐱𝑑𝑑; 𝛌̇𝛌𝑖𝑖𝑖𝑖𝑖𝑖) as assigned 
variables of the respective BLT block. 

3. 𝐫𝐫0,𝑎𝑎 are non-differentiated equations of (10a), so 
equations 𝑒𝑒𝑖𝑖 with 𝐵𝐵𝑖𝑖 = 0 and 𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖,𝑖𝑖 = 0, that have 
only algebraic variables (𝐱𝐱𝑎𝑎) as assigned variables 
of the respective BLT block. 

4. 𝐫𝐫𝐷𝐷𝐷𝐷𝑅𝑅(0) are constraint equations (10b) that are not 
differentiated, so equations 𝑒𝑒𝑖𝑖 with 𝐵𝐵𝑖𝑖 = 0 and 
𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖,𝑖𝑖 = 0. 

5. 𝐫𝐫𝐷𝐷𝐷𝐷𝐷𝐷(1:𝑛𝑛−1) = 𝐆𝐆(𝐱𝐱𝑑𝑑𝑑𝑑𝑑𝑑(0:𝑛𝑛−2), 𝑡𝑡)𝐱𝐱𝑑𝑑𝑑𝑑𝑑𝑑(1:𝑛𝑛−1) +
𝐠𝐠(𝐱𝐱𝑑𝑑𝑑𝑑𝑑𝑑(0:𝑛𝑛−2), 𝑡𝑡) are constraint equations (10b) 
that are differentiated at least once, but not the 
highest derivative equations, so equations 𝑒𝑒𝑖𝑖 with 
𝐵𝐵𝑖𝑖 > 0 and 𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖,𝑖𝑖 > 0. The number of additionally 
introduces variables 𝑛𝑛𝜇𝜇 is equal to the number of 
equations of 𝐫𝐫𝐷𝐷𝐷𝐷𝐷𝐷(1:𝑛𝑛−1). 

6. Matrix 𝐆𝐆 collects the linear factors of the equations 
𝑟𝑟𝐷𝐷𝐷𝐷𝐷𝐷(1:𝑛𝑛−1),𝑖𝑖 with respect to the highest derivatives 
𝐱𝐱𝑑𝑑𝑑𝑑𝑑𝑑(1:𝑛𝑛−1),𝑖𝑖 appearing in the resp. equation 𝑒𝑒𝑖𝑖. 
Note, as recognized in (Führer, 1988) in a similar 
context, 𝐆𝐆 is part of the iteration matrix (Jacobian) 
of a BDF integrator and therefore if the iteration 
matrix is computed numerically, 𝐆𝐆 is determined 
without additional effort, see also (Arnold, 2016). 

With this structuring we can now prove the following 
theorems: 

Theorem 4: (17) is a DAE (2) under the assumption 
that 𝜕𝜕𝑒𝑒𝑖𝑖

𝜕𝜕𝑣𝑣𝒋𝒋
 for 𝐴𝐴𝑗𝑗 = 0 in (10a) is regular (and not just 

structurally regular) and 𝑮𝑮 has full row rank (= the 
constraints are not redundant).  
Proof: (a) Due to the construction, the upper two 
equations of (17b) are a function of 𝐱̇𝐱, 𝐱𝐱, 𝑡𝑡 and the 
lower three equations are not functions of 𝐱̇𝐱, so (17b) 
has the functional dependency as required by (2a).  
(b)  𝑑𝑑𝒓𝒓𝐷𝐷𝐷𝐷𝐷𝐷(0:𝑛𝑛−2) 𝑑𝑑𝑑𝑑⁄ = 𝐫𝐫𝐷𝐷𝐷𝐷𝐷𝐷(1:𝑛𝑛−1)  → 

𝟎𝟎 = 𝐆𝐆(𝐱̇𝐱𝑑𝑑𝑑𝑑𝑑𝑑(0:𝑛𝑛−2) − 𝐱𝐱𝑑𝑑𝑑𝑑𝑑𝑑(1:𝑛𝑛−1)) 
= 𝐆𝐆𝐆𝐆𝑇𝑇𝛍̇𝛍𝑖𝑖𝑖𝑖𝑖𝑖        →     𝛍̇𝛍𝑖𝑖𝑖𝑖𝑖𝑖 = 𝟎𝟎 

(c) If the highest order constraint equations in the 
lower part of (17b) are differentiated once, then these 
differentiated equations, together with the second and 
third equation of (17b) are the highest order derivative 
equations of (10a) which can be solved for the highest 
order derivatives (so for 𝐱̇𝐱, since 𝛍̇𝛍𝑖𝑖𝑖𝑖𝑖𝑖 = 𝟎𝟎) due to the 
assumption and therefore (2b) holds.∎ 
Theorem 5: (17) and (9) have the same solution 
space. 
Proof: Since 𝛍̇𝛍int = 𝟎𝟎, (17) are equations (9) and 
differentiated equations of (9). ∎ 
To summarize, every DAE (1) can be transformed to 
DAE (17) without solving linear or nonlinear algebraic 
equation systems provided the Pantelides algorithm or 
an equivalent structural index reduction algorithm can 
be applied to it. (17) is an index one DAE (2). 

4.4 Example 
(17) is demonstrated with the following example from 
(Mattsson and Söderlind, 1993) that has been extended 
with additional equations and unknowns to include 
several special cases on the basis of a simple DAE: 

0 = 𝑢𝑢1(𝑡𝑡) + 𝑥𝑥1 − 𝑥𝑥2 
0 = 𝑢𝑢2(𝑡𝑡) + 𝑥𝑥1 + 𝑥𝑥2 − 𝑥𝑥3 + 𝑥̇𝑥6 
0 = 𝑢𝑢3(𝑡𝑡) + 𝑥𝑥1 + 𝑥̇𝑥3 − 𝑥𝑥4 
0 = 𝑢𝑢4(𝑡𝑡) + 2𝑥̈𝑥1 + 𝑥̈𝑥2 + 𝑥̈𝑥3 + 𝑥̇𝑥4 + 𝑥𝑥6 
0 = 𝑢𝑢5(𝑡𝑡) + 3𝑥̈𝑥1 + 2𝑥̈𝑥2 + 𝑥𝑥5 + 0.1𝑥𝑥8 
0 = 𝑢𝑢6(𝑡𝑡) + 2𝑥𝑥6 + 𝑥𝑥7 
0 = 𝑢𝑢7(𝑡𝑡) + 3𝑥𝑥6 + 4𝑥𝑥7 
0 = 𝑢𝑢8(𝑡𝑡) + 𝑥𝑥8 − sin (𝑥𝑥8) 

(18a) 
(18b) 
(18c) 
(18d) 
(18e) 
(18f) 
(18g) 
(18h) 

Session 9B: Numerical & Symbolic Methods

DOI
10.3384/ecp17132565

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

571



The 𝑢𝑢𝑖𝑖(𝑡𝑡) are known forcing functions. Applying the 
Pantelides algorithm (Pantelides, 1988)2 and sorting 
the equations on highest derivative level results in the 
following three BLT components: 

BLT component 1 (unknowns: 𝑥𝑥8)  
0 = 𝑢𝑢8(𝑡𝑡) + 𝑥𝑥8 − sin (𝑥𝑥8) (19h) 

BLT component 2 (unknowns: 𝑥𝑥6, 𝑥𝑥7)  
0 = 𝑢𝑢6(𝑡𝑡) + 2𝑥𝑥6 + 𝑥𝑥7 
0 = 𝑢𝑢7(𝑡𝑡) + 3𝑥𝑥6 + 4𝑥𝑥7 

(19𝑓𝑓) 
(19𝑔𝑔) 

BLT component 3 (unknowns: 𝑥̈𝑥1, 𝑥̈𝑥2, 𝑥̈𝑥3, 𝑥̇𝑥4, 𝑥𝑥5) 
0 = 𝑢̈𝑢1(𝑡𝑡) + 𝑥̈𝑥1 − 𝑥̈𝑥2 
0 = 𝑢̈𝑢2(𝑡𝑡) + 𝑥̈𝑥1 + 𝑥̈𝑥2 − 𝑥̈𝑥3 + 𝑥𝑥6 
0 = 𝑢̇𝑢3(𝑡𝑡) + 𝑥̇𝑥1 + 𝑥̈𝑥3 − 𝑥̇𝑥4 
0 = 𝑢𝑢4(𝑡𝑡) + 2𝑥̈𝑥1 + 𝑥̈𝑥2 + 𝑥̈𝑥3 + 𝑥̇𝑥4 + 𝑥𝑥6 
0 = 𝑢𝑢5(𝑡𝑡) + 3𝑥̈𝑥1 + 2𝑥̈𝑥2 + 𝑥𝑥5 + 0.1𝑥𝑥8 

(19𝑎̈𝑎) 
(19𝑏̈𝑏) 
(19𝑐̇𝑐) 
(19𝑑𝑑) 
(19𝑒𝑒) 

Transformation to the index one DAE (17) results in: 
𝐱𝐱𝑑𝑑 = [𝑥𝑥1; 𝑥𝑥2; 𝑥𝑥3; 𝑥𝑥4; 𝑥𝑥6; 𝑥𝑥7; 𝑥̇𝑥1; 𝑥̇𝑥2; 
            𝑥̇𝑥3; 𝑥̇𝑥6; 𝑥̇𝑥7; 𝑥̈𝑥6; 𝑥̈𝑥7] 
𝐱𝐱𝑎𝑎 = [𝑥𝑥8] 

𝛌̇𝛌𝑖𝑖𝑖𝑖𝑖𝑖 = [𝑥𝑥5] 

𝐫𝐫0,𝑑𝑑 = �𝑢𝑢4(𝑡𝑡) + 2𝑥̈𝑥1 + 𝑥̈𝑥2 + 𝑥̈𝑥3 + 𝑥̇𝑥4 + 𝑥⃛𝑥6
𝑢𝑢5(𝑡𝑡) + 3𝑥̈𝑥1 + 2𝑥̈𝑥2 + 𝑥𝑥5 + 0.1𝑥𝑥8

� 

𝐫𝐫0,𝑎𝑎 = [𝑢𝑢8(𝑡𝑡) + 𝑥𝑥8 − sin(𝑥𝑥8)] 

𝐫𝐫𝐷𝐷𝐷𝐷𝐷𝐷(0) =

⎣
⎢
⎢
⎢
⎡ 𝑢𝑢1(𝑡𝑡) + 𝑥𝑥1 − 𝑥𝑥2
𝑢𝑢2(𝑡𝑡) + 𝑥𝑥1 + 𝑥𝑥2 − 𝑥𝑥3 + 𝑥̇𝑥6
𝑢𝑢3(𝑡𝑡) + 𝑥𝑥1 + 𝑥̇𝑥3 − 𝑥𝑥4
𝑢𝑢6(𝑡𝑡) + 2𝑥𝑥6 + 𝑥𝑥7
𝑢𝑢7(𝑡𝑡) + 3𝑥𝑥6 + 4𝑥𝑥7 ⎦

⎥
⎥
⎥
⎤

 

𝐫𝐫𝐷𝐷𝐷𝐷𝐷𝐷(1:𝑛𝑛−1) =

⎣
⎢
⎢
⎢
⎢
⎢
⎡ 𝑢̇𝑢1(𝑡𝑡) + 𝑥̇𝑥1 − 𝑥̇𝑥2
𝑢̇𝑢2(𝑡𝑡) + 𝑥̇𝑥1 + 𝑥̇𝑥2 − 𝑥̇𝑥3 + 𝑥̈𝑥6

𝑢̇𝑢6(𝑡𝑡) + 2𝑥̇𝑥6 + 𝑥̇𝑥7
𝑢̇𝑢7(𝑡𝑡) + 3𝑥̇𝑥6 + 4𝑥̇𝑥7
𝑢̈𝑢6(𝑡𝑡) + 2𝑥̈𝑥6 + 𝑥̈𝑥7
𝑢̈𝑢7(𝑡𝑡) + 3𝑥̈𝑥6 + 4𝑥̈𝑥7 ⎦

⎥
⎥
⎥
⎥
⎥
⎤
′

 

𝐆𝐆 =

⎣
⎢
⎢
⎢
⎢
⎡
1 −2 0 0 0 0 0
1 2 −3 0 0 0 0
0 0 0 2 1 0 0
0 0 0 3 4 0 0
0 0 0 0 0 2 1
0 0 0 0 0 3 4⎦

⎥
⎥
⎥
⎥
⎤

 

𝑑𝑑𝑑𝑑𝑑𝑑(0:𝑛𝑛 − 2) = [1; 2; 3; 5; 6; 10; 11] 
𝑑𝑑𝑑𝑑𝑑𝑑(1:𝑛𝑛 − 1) = [7; 8; 9; 10; 11; 12; 13] 

The result is a DAE with 21 equations that can be 
solved with an index one DAE integrator. 

                                                        
2 For simplicity of the example, the equations contain higher 
derivatives. The Pantelides algorithm can be easily generalized 
to this case by providing a corresponding 𝐀𝐀 vector. 

4.5 Structuring the Constraint Sets 
The direct mapping to (17) results often in 
unnecessarily large DAEs. We will therefore now 
improve the mapping by utilizing (partial) static state 
selection. As a first step, the inherent structure of the 
constraint set (10b) is (algorithmically) determined. 
This can be performed elegantly by utilizing results 
from the dummy derivative method of (Mattsson and 
Söderlind, 1993). The "lower derivative" equations 
(10b) determined by the Pantelides algorithm are 
ignored in the sequel and they are instead newly 
derived from the sorted highest derivative equations 
(10a) by inspecting every BLT component in sequence 
and for component k the follow actions are performed: 
Step 1: The differentiation order of an equation in 

component k is reduced by one if it is a 
differentiated equation. The resulting set of 
equations forms an independent constraint set. 

Step 2: The differentiation order of an unknown (= 
assigned variable) in component k is reduced by 
one if it is a differentiated variable. The resulting 
set of variables contains the unknowns of the 
derived constraint set. 

Step 3: Goto Step 1, if there are still differentiated 
equations in the derived constraint set and apply 
Step 1-3 on it. Otherwise, go to Step 4. 

Step 4: Order the components in such a way that 
within a BLT component first the lowest order 
derivative constraints are placed, then the 
constraints with one differentiation order higher 
and so on. The order of the BLT components is not 
changed. 

Applying this procedure to (19) results in the following 
sorted ODAE: 

BLT component 1 (unknowns: 𝑥𝑥8) 

(20) 

0 = 𝑢𝑢8(𝑡𝑡) + 𝑥𝑥8 − sin (𝑥𝑥8) 
BLT component 2  
 BLT component 2.1 (unknowns: 𝑥𝑥6, 𝑥𝑥7) 
 0 = 𝑢𝑢6(𝑡𝑡) + 2𝑥𝑥6 + 𝑥𝑥7 

0 = 𝑢𝑢7(𝑡𝑡) + 3𝑥𝑥6 + 4𝑥𝑥7 
 BLT component 2.2 (unknowns: 𝑥̇𝑥6, 𝑥̇𝑥7) 
 0 = 𝑢̇𝑢6(𝑡𝑡) + 2𝑥̇𝑥6 + 𝑥̇𝑥7 

0 = 𝑢̇𝑢7(𝑡𝑡) + 3𝑥̇𝑥6 + 4𝑥̇𝑥7 
 BLT component 2.3 (unknowns: 𝑥̈𝑥6, 𝑥̈𝑥7) 
 0 = 𝑢̈𝑢6(𝑡𝑡) + 2𝑥̈𝑥6 + 𝑥̈𝑥7 

0 = 𝑢̈𝑢7(𝑡𝑡) + 3𝑥̈𝑥6 + 4𝑥̈𝑥7 
 BLT component 2.4 (unknowns: 𝑥𝑥6, 𝑥𝑥7) 
 0 = 𝑢𝑢6(𝑡𝑡) + 2𝑥𝑥6 + 𝑥𝑥7 

0 = 𝑢𝑢7(𝑡𝑡) + 3𝑥𝑥6 + 4𝑥𝑥7 
BLT component 3  
 BLT component 3.1 (unknowns: 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3) 
 0 = 𝑢𝑢1(𝑡𝑡) + 𝑥𝑥1 − 𝑥𝑥2 

0 = 𝑢𝑢2(𝑡𝑡) + 𝑥𝑥1 + 𝑥𝑥2 − 𝑥𝑥3 + 𝑥̇𝑥6 
 BLT component 3.2 (unknowns: 𝑥̇𝑥1, 𝑥̇𝑥2, 𝑥̇𝑥3, 𝑥𝑥4) 
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 0 = 𝑢̇𝑢1(𝑡𝑡) + 𝑥̇𝑥1 − 𝑥̇𝑥2 
0 = 𝑢̇𝑢2(𝑡𝑡) + 𝑥̇𝑥1 + 𝑥̇𝑥2 − 𝑥̇𝑥3 + 𝑥̈𝑥6 
0 = 𝑢𝑢3(𝑡𝑡) + 𝑥𝑥1 + 𝑥̇𝑥3 − 𝑥𝑥4 

 BLT component 3.3 (unknowns: 𝑥̈𝑥1, 𝑥̈𝑥2, 𝑥̈𝑥3, 𝑥̇𝑥4, 𝑥𝑥5) 
 0 = 𝑢̈𝑢1(𝑡𝑡) + 𝑥̈𝑥1 − 𝑥̈𝑥2 

0 = 𝑢̈𝑢2(𝑡𝑡) + 𝑥̈𝑥1 + 𝑥̈𝑥2 − 𝑥̈𝑥3 + 𝑥𝑥6 
0 = 𝑢̇𝑢3(𝑡𝑡) + 𝑥̇𝑥1 + 𝑥̈𝑥3 − 𝑥̇𝑥4 
0 = 𝑢𝑢4(𝑡𝑡) + 2𝑥̈𝑥1 + 𝑥̈𝑥2 + 𝑥̈𝑥3 + 𝑥̇𝑥4 + 𝑥𝑥6 
0 = 𝑢𝑢5(𝑡𝑡) + 3𝑥̈𝑥1 + 2𝑥̈𝑥2 + 𝑥𝑥5 + 0.1𝑥𝑥8 

Due to the construction, a variable like 𝑥̈𝑥6 is computed 
in a BLT sub-component (here: BLT component 2.3) 
and used only in later BLT components (here BLT 
component 3.2). 

In the next step the number of constraint equations 
and unknowns shall be reduced statically. In principal 
this is just a variant of the dummy derivative method. 
However, (Mattsson and Söderlind, 1993) describe a 
(very useful) conceptual algorithm, but not how to 
implement it practically for nonlinear systems which 
requires non-trivial extensions. In order to do this, an 
auxiliary algorithm is needed that is described in the 
next section. 

4.6 Tearing with retained solution space 
Starting point is a nonlinear algebraic equation system 

𝟎𝟎 = 𝒈𝒈(𝒛𝒛), 𝒛𝒛 ∈ ℝ𝑛𝑛𝑛𝑛 ,𝒈𝒈 ∈ ℝ𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛 ≤ 𝑛𝑛𝑛𝑛 (21) 
where the number of equations 𝑛𝑛𝑛𝑛 is at most the same 
as the number of unknowns 𝑛𝑛𝑛𝑛, but it may be less. The 
goal is to split this equation system in an explicitly 
solvable part and an implicit part: 

𝒛𝒛𝑒𝑒 ∶= 𝒈𝒈𝑒𝑒(𝒛𝒛𝑒𝑒 , 𝒛𝒛𝑡𝑡) 
0 = 𝒈𝒈𝑟𝑟(𝒛𝒛𝑒𝑒 , 𝒛𝒛𝑡𝑡) 

(22a) 
(22b) 

where 𝒛𝒛𝑒𝑒 can be solved recursively from (22a) by 
utilizing only already computed elements of 𝒛𝒛𝑒𝑒 when 
calculating a new element of 𝒛𝒛𝑒𝑒. 𝒛𝒛𝑒𝑒 are called the 
explicitly solvable variables of 𝒛𝒛, 𝒛𝒛𝑡𝑡 the tearing 
variables of 𝒛𝒛 and 𝒈𝒈𝑟𝑟 the residue equations. The 
interpretation is that when 𝒛𝒛𝑡𝑡 is given, 𝒛𝒛𝑒𝑒 can be 
explicitly computed and 𝒛𝒛𝑡𝑡 must be provided in such a 
way that the residues equations are fulfilled. 

In order that this transformation is practically useful, 
the solution space of (22) must be identical to the 
solution space of (21). In the following an algorithm is 
derived to automatically deduce (22) from (21) such 
that (22) has the same solution space as (21).  

Tearing is a well-known technique and was 
probably introduced by (Kron, 1962). A recent 
extensive literature survey is given in (Bahainv et al., 
2016a). In (Bahainv et al., 2016b) a novel tearing 
technique is proposed based on an integer 
programming formulation with a custom branch and 
bound algorithm. Tearing was used in object-oriented 
modeling, for example in (Elmqvist and Otter, 1994) 
and in (Carpanzano et al., 1997). The following 
algorithm sketch for automatic tearing is due to a 

development of the authors of this paper in 1999. Some 
results of it have been reported in (Otter, 1999): 

Equation (22a) can be interpreted as a DAG 
(Directed Acyclic Graph) where the nodes are 
equations 𝑔𝑔𝑒𝑒,𝑖𝑖 together with the explicitly solved 
variables 𝑧𝑧𝑒𝑒,𝑖𝑖 of 𝑔𝑔𝑒𝑒,𝑖𝑖, and the edges of a node i are 
directed to the nodes of the remaining variables 𝑧𝑧𝑒𝑒,𝑖𝑖 
appearing in 𝑔𝑔𝑒𝑒,𝑖𝑖. The goal of the algorithm is to 
construct such a DAG using equations and unknowns 
from (21). Initially, the DAG is empty and is 
constructed with the following steps: 
Step 1: Select an array equation i from (21) that is not 

yet in the DAG (in a first step equations are 
selected according to their initial ordering; later, 
heuristics for the selection are added based on 
additional information). 

Step 2: Select an array variable j from equation i that 
is (a) not assigned to equation i, (b) not yet 
selected before in this equation, and (c) can be 
explicitly solved from equation i (so the array size 
of variable j and of the array equation i must agree) 
without changing the solution space of this 
equation (e.g. using only variables 𝑧𝑧𝑗𝑗 as candidates 
that are within linear factors 𝑐𝑐 ∙ 𝑧𝑧𝑗𝑗 where 𝑐𝑐 is a 
constant with 𝑐𝑐 ≠ 0; see also the discussion about 
heuristics below and (Otter, 1999)). 

Step 3: Add equation i and the selected variable j from 
Step 2 as node to the potential DAG.  

Step 4: Traverse the potential DAG starting from the 
added equation node and use a standard DFS 
(Depth First Search) to determine if there is a cycle 
for this equation node. If there is a cycle, remove 
the last added equation from it and if not all 
variables of equation i have been inspected, go to 
Step 2. If no cycle is present, continue with the 
next step. 

Step 5: If not all equations have been inspected, go to 
Step 1. Otherwise, stop (equations (22a) are the 
equations in the DAG, 𝒛𝒛𝑒𝑒 are the assigned 
variables in the DAG). 

With 𝑚𝑚 the number of variable incidences in the 
system of equations, the worst time complexity of this 
algorithm to find the tearing variables and residue 
equations is 𝑂𝑂(𝑚𝑚2) because every DFS from every 
inserted node has a worst-time complexity of 𝑂𝑂(𝑚𝑚) 
and this operation is executed potentially 𝑚𝑚 times 
(since in the worst case a DFS is performed on every 
variable in every equation). 

In the last decade, several new algorithms have been 
developed to perform incremental cycle detection when 
inserting vertices and edges to an existing DAG. The 
algorithm of (Bender et al., 2016) has the currently 
best worst case performance for sparse DAGs with 
𝑂𝑂(min (𝑚𝑚1/2,𝑛𝑛2/3) ∙ 𝑚𝑚), where 𝑛𝑛 is the number of 
vertices and 𝑚𝑚 the number of edges. For comparison of 
such algorithms, see (Sigurðsson, 2016). 
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The implementation in Modia/Julia uses currently 
the simple Algorithm N of (Bender et al., 2016) that 
has a worst time complexity of 𝑂𝑂(𝑛𝑛 ∙ 𝑚𝑚). For example, 
when an equation system of the following form is 
present  

0 = 𝑓𝑓1(𝑧𝑧1, 𝑧𝑧𝑛𝑛) 
0 = 𝑓𝑓2(𝑧𝑧2, 𝑧𝑧1) 
0 = 𝑓𝑓3(𝑧𝑧3, 𝑧𝑧2) 
     … 
0 = 𝑓𝑓𝑛𝑛(𝑧𝑧𝑛𝑛, 𝑧𝑧𝑛𝑛−1) 

(23) 

and the equations are added in the order 1,2,..., n (or 
also in the order n,n-1,...,1), this tearing algorithm has 
a complexity of 𝑂𝑂(𝑛𝑛) to find the single tearing 
variable. On a standard notebook, this takes about 2 s 
for 𝑛𝑛 = 106. 

The result of the tearing algorithm depends on the 
order in which equations are added to the DAG. There 
are at least two useful heuristics: (a) If the user 
explicitly requires to solve equations for particular 
variables (for example using the operator ":=" instead 
of "=" in the Modia prototype, or the algorithm section 
or a function call in Modelica), then these equations are 
inspected first. All equations belonging to the 
connection graph (especially all linear equations with 
only Integer coefficients, see section 5) are inspected 
last, because it seems most natural for a physical 
system to cut an algebraic loop along the connection 
graph, and not within a component. 

Tearing can have a significant influence on the 
reliability of the numerical solution and therefore it is 
not always clear whether it is useful to apply tearing to 
solve algebraic loops. For this reason, more heuristics 
need to be added, for example, arrays might be solved 
in Step 2 above only, if they appear as linear term and 
the linear factors are the scalars +1 or -1, in order to 
avoid a potential division by a small value, or if the 
linear term is an orthogonal matrix so that inversion is 
reliable.  

4.7 Partial state selection 
The tearing algorithm from the last section shall now 
be used to partially solve the constraint equations and 
thereby identify states and dummy states. The 
constraint equation sets are derived with the approach 
of section 4.5 and all these sets have the following 
structure: 

𝟎𝟎 = 𝒈𝒈(𝒙𝒙1,𝒙𝒙2) 

  𝒙𝒙1 ∈ ℝ𝑛𝑛𝑛𝑛1,𝒙𝒙2 ∈ ℝ𝑛𝑛𝑛𝑛2𝒈𝒈 ∈ ℝ𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛 ≤ 𝑛𝑛𝑛𝑛1 
(24) 

where 𝒙𝒙1 are potential states, 𝒙𝒙2 are potential states 
that have been already handled in a previous BLT sub-
component (so can be treated as known variables) and 
𝒈𝒈(. . ) is a set of algebraic constraint equations on 𝒙𝒙1. 
Via tearing the constraint equation set (24) can be split 

in an explicitly solvable part 𝒈𝒈𝑒𝑒(. . ) and in an implicit 
part 𝒈𝒈𝑟𝑟(. . ): 

𝐱𝐱1𝑒𝑒 ∶= 𝒈𝒈𝑒𝑒(𝒙𝒙1𝑒𝑒 ,𝒙𝒙1𝑡𝑡 ,𝒙𝒙2) 
0 = 𝒈𝒈𝑟𝑟(𝒙𝒙1𝑒𝑒 ,𝒙𝒙1𝑡𝑡 ,𝒙𝒙2) (25) 

The explicitly solvable variables 𝐱𝐱1𝑒𝑒 are dummy states 
according to the dummy derivative method of 
(Mattsson and Söderlind, 1993). The tearing variables 
𝒙𝒙1𝑡𝑡 remain potential states. If no residue equations 
𝒈𝒈𝑟𝑟(..) are present, the full set of states has been 
identified. If the equations are linear in 𝒙𝒙1𝑒𝑒 ,𝒙𝒙1𝑡𝑡, then 
the residue equations can be transformed to a linear 
equation in the tearing variables, see for example 
(Elmqvist and Otter, 1994). For constant coefficient 
linear systems, this equation system can be at once 
solved. For variable coefficient linear systems, an 
inline solution of the linear system might be used, at 
least for systems with up to three unknowns. In all 
these cases the full set of states has been identified as 
well. 

The state selection with tearing is applied on all 
constraint sets starting from the lower to the higher 
derivative constraint sets ec[1]...ec[end] of every BLT 
component. Since by construction ec[i] is a superset of 
ec[i-1], and the unknowns 𝒗̇𝒗𝑖𝑖 of ec[i] are a 
differentiated superset of the unknowns 𝒗𝒗𝑖𝑖−1, all 
explicitly solvable equations of ec[i-1] are also 
explicitly solvable equations of ec[i] and therefore 
tearing need only to be performed additionally on 
equations that are added at a higher level. 

Applying the partial state selection for example on 
BLT sub-component 3.1 of (20) identifies 𝑥𝑥2 as state 
and computes the dummy states from: 

𝑥𝑥1 ∶= −𝑢𝑢1(𝑡𝑡) + 𝑥𝑥2 
𝑥𝑥3 ∶= −𝑢𝑢2(𝑡𝑡) − 𝑥𝑥1 + 𝑥𝑥2 − 𝑥̇𝑥6 

The same analysis holds for BLT sub-component 3.2, 
so 𝑥̇𝑥2 is also a state and the following equations are 
directly deduced from the previous equations: 

𝑥̇𝑥1 ∶= −𝑢̇𝑢1(𝑡𝑡) + 𝑥̇𝑥2 
𝑥̇𝑥3 ∶= −𝑢̇𝑢2(𝑡𝑡) − 𝑥̇𝑥1 + 𝑥̇𝑥2 − 𝑥̈𝑥6 

Tearing must therefore only be applied for the 
additional equation of this sub-component leading to: 

𝑥𝑥4 ∶= 𝑢𝑢3(𝑡𝑡) + 𝑥𝑥1 + 𝑥̇𝑥3 

Applying the partial state selection on BLT sub-
component 2.1 of (20) identifies 𝑥𝑥6 as state and 
computes the dummy state from 

𝑥𝑥7 ∶= −𝑢𝑢6(𝑡𝑡) − 2𝑥𝑥6 

The residue equation is linear in 𝑥𝑥6 and can then be 
solved for:  

𝑥𝑥6 ∶= (−𝑢𝑢7(𝑡𝑡) − 4𝑢𝑢6(𝑡𝑡))/5 

Once partial state selection has been applied on all 
constraint sets, all the dummy states and their 
derivatives, up to the highest derivatives of the dummy 
states, are removed from 𝐱𝐱 and 𝒙̇𝒙 and are computed 
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locally from the remaining 𝐱𝐱 and 𝒙̇𝒙. The remaining 
equations can be transformed to DAE (17). Hereby, the 
sorting order of the locally solved equations matters 
and therefore the ordering has to be performed 
according to the BLT ordering and the corresponding 
ordering of the constraint sets. 

Applying partial state selection with tearing on 
example (20) results in the following DAE (17): 

𝐱𝐱𝑑𝑑 = [𝑥𝑥2;  𝑥̇𝑥2] 
𝐱𝐱𝑎𝑎 = [𝑥𝑥8] 
𝛌̇𝛌𝑖𝑖𝑖𝑖𝑖𝑖 = [ ] 
𝛍̇𝛍𝑖𝑖𝑖𝑖𝑖𝑖 = [ ] 
𝑥𝑥6 ∶= �−𝑢𝑢7(𝑡𝑡) − 4𝑢𝑢6(𝑡𝑡)� 5⁄  
𝑥𝑥7 ∶=  −𝑢𝑢6(𝑡𝑡) − 2𝑥𝑥6 
𝑥̇𝑥6 ∶= �−𝑢̇𝑢7(𝑡𝑡) − 4𝑢̇𝑢6(𝑡𝑡)� 5⁄  
𝑥̇𝑥7 ∶=  −𝑢̇𝑢6(𝑡𝑡) − 2𝑥̇𝑥6 
𝑥̈𝑥6 ∶= �−𝑢̈𝑢7(𝑡𝑡) − 4𝑢̈𝑢6(𝑡𝑡)� 5⁄  
𝑥̈𝑥7 ∶=  −𝑢̈𝑢6(𝑡𝑡) − 2𝑥̈𝑥6 
𝑥𝑥6 ∶= �−𝑢⃛𝑢7(𝑡𝑡) − 4𝑢⃛𝑢6(𝑡𝑡)� 5⁄  
𝑥𝑥7 ∶=  −𝑢⃛𝑢6(𝑡𝑡) − 2𝑥𝑥6 
𝑥𝑥1 ∶= −𝑢𝑢1(𝑡𝑡) + 𝑥𝑥2 
𝑥𝑥3 ∶= −𝑢𝑢2(𝑡𝑡) − 𝑥𝑥1 + 𝑥𝑥2 − 𝑥̇𝑥6 
𝑥̇𝑥1 ∶= −𝑢̇𝑢1(𝑡𝑡) + 𝑥̇𝑥2 
𝑥̇𝑥3 ∶= −𝑢̇𝑢2(𝑡𝑡) − 𝑥̇𝑥1 + 𝑥̇𝑥2 − 𝑥̈𝑥6 
𝑥𝑥4 ∶= 𝑢𝑢3(𝑡𝑡) + 𝑥𝑥1 + 𝑥̇𝑥3 
𝑥̈𝑥1 ∶= −𝑢̈𝑢1(𝑡𝑡) + 𝑥̈𝑥2 
𝑥̈𝑥3 ∶= −𝑢̈𝑢2(𝑡𝑡) − 𝑥̈𝑥1 + 𝑥̈𝑥2 − 𝑥𝑥6 
𝑥̇𝑥4 ∶= 𝑢̇𝑢3(𝑡𝑡) + 𝑥̇𝑥1 + 𝑥̈𝑥3 
𝑥𝑥5 ∶= −𝑢𝑢5(𝑡𝑡) − 3𝑥̈𝑥1 − 2𝑥̈𝑥2 − 0.1𝑥𝑥8 
𝐫𝐫0,𝑑𝑑 = [𝑢𝑢4(𝑡𝑡) + 2𝑥̈𝑥1 + 𝑥̈𝑥2 + 𝑥̈𝑥3 + 𝑥̇𝑥4 + 𝑥𝑥6] 
𝐫𝐫0,𝑎𝑎 = [𝑢𝑢8(𝑡𝑡) + 𝑥𝑥8 − sin(𝑥𝑥8)] 
𝐆𝐆 = [ ] 

𝑑𝑑𝑑𝑑𝑑𝑑(0:𝑛𝑛 − 2) = [1] 
𝑑𝑑𝑑𝑑𝑑𝑑(1:𝑛𝑛 − 1)  = [2]      (→   𝑥̇𝑥𝑑𝑑,1 = 𝑥𝑥𝑑𝑑,2) 

The result is a DAE with 3 equations (without partial 
state selection, it had been 21 equations). 

Using tearing for the constraint equations seems to 
be always a useful approach because this can 
significantly reduce the number of variables that need 
to be discretized by the integrator. For example, 
assume a tree-structured multi-body system is modeled 
with the Modelica.Mechanics.MultiBody library and 
has 𝑛𝑛 bodies that are connected together by revolute 
joints. Without partial state selection, DAE (17) 
consists of (6 ∙ 3 + 4 ∙ 9 + 2)𝑛𝑛 = 56𝑛𝑛 equations3. 
After partial state selection with tearing the DAE 
consists of the 2𝑛𝑛 equations (15), provided the simple 
heuristics from section 4.6 are used. 

However, it is less clear whether tearing is also 
useful when applied on the highest order derivative 
equations that are no derivatives of constraints. For 
example, discretized partial differential equations 
typically lead to structures where tearing cannot reduce 
                                                        
3 𝐱𝐱 = �𝐫𝐫𝑖𝑖; 𝐫̇𝐫𝑖𝑖;𝐓𝐓𝑖𝑖; 𝐓̇𝐓𝑖𝑖;𝛚𝛚𝑖𝑖; 𝐫𝐫𝑖𝑖𝐶𝐶𝐶𝐶; 𝐫̇𝐫𝑖𝑖𝐶𝐶𝐶𝐶;𝐓𝐓𝑖𝑖𝐶𝐶𝐶𝐶; 𝐓̇𝐓𝑖𝑖𝐶𝐶𝐶𝐶;𝛚𝛚𝑖𝑖

𝐶𝐶𝐶𝐶;𝜑𝜑𝑖𝑖; 𝜑̇𝜑𝑖𝑖� 
𝑖𝑖 = 1,2, . . .𝑛𝑛 

the equation size much but will completely destroy the 
sparseness and may be numerically less reliable. In 
such cases it is much better to not apply tearing and 
rely on the sparse matrix handling used by the 
integrator. More investigations are needed here. 

5 Exact Removal of Singularities 
5.1 Overview 
In this section a new method is proposed to exactly 
remove certain types of singularities of a physical 
system model provided as DAE (1). The result is again 
a DAE in form (1). A typical example is shown in 
Figure 1. 

 
Figure 1. Modelica model of an electrical circuit that is 
difficult to simulate. It can be automatically handled with 
the method of this section. 
Modelica tools transform DAEs (1) with structural 
symbolic algorithms. These algorithms fail for the 
circuit in Figure 1 (as well as other useful application 
models). Since this electrical circuit is not grounded, 
the potentials of the electrical Pins can float, that is, the 
system equations are underdetermined. On the other 
hand, the equations are overdetermined regarding 
currents. An analysis, literature survey, and a solution 
based on exploitation of the connection graph is 
presented in (Elmqvist and Mattsson, 2016).  

Additionally, the currents 𝑖𝑖𝐿𝐿1, 𝑖𝑖𝐿𝐿2 appear differen-
tiated in the inductors 𝐿𝐿1, 𝐿𝐿2 and are therefore assumed 
to be known. The two inductors are connected by two 
resistors in parallel leading to the following connection 
equations for the currents: 

𝑖𝑖𝐿𝐿1 = 𝑖𝑖𝑅𝑅1 + 𝑖𝑖𝑅𝑅2 
𝑖𝑖𝐿𝐿2 = 𝑖𝑖𝑅𝑅1 + 𝑖𝑖𝑅𝑅2 

(26) 

where 𝑖𝑖𝑅𝑅1, 𝑖𝑖𝑅𝑅2 are the currents through the resistances 
𝑅𝑅1,𝑅𝑅2. Structurally, (26) are two equations for two 
unknown algebraic variables 𝑖𝑖𝑅𝑅1, 𝑖𝑖𝑅𝑅2 since the potential 
states 𝑖𝑖𝐿𝐿1, 𝑖𝑖𝐿𝐿2 are assumed to be known. Therefore, 
structural algorithms assume that  𝑖𝑖𝑅𝑅1, 𝑖𝑖𝑅𝑅2 can be 
determined from (26). However, when subtracting the 
two equations 𝑖𝑖𝐿𝐿1 + 𝑖𝑖𝐿𝐿2 = 0, that is an equation with 
only known variables is obtained, which means that 
one of the two variables cannot be a state. As a result 
structural index reduction algorithms, as discussed in 
section 3, will fail on this circuit. 

The method below is based on the observation that 
object-oriented models have a particular structure: 
Zero-sum equations of flow variables 𝑖𝑖 in connectors 
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𝑐𝑐𝑘𝑘 have the form ∑𝑐𝑐𝑘𝑘 . 𝑖𝑖 = 0. After alias elimination, 
relative potential variables in a component have the 
form 𝑢𝑢𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑐𝑐𝑘𝑘. 𝑣𝑣 − 𝑐𝑐𝑗𝑗 . 𝑣𝑣. All these equations have the 
common property that they are linear and the 
coefficients are integer (even +1 or -1). Due to the 
integer coefficients exact analysis is possible. In 
particular, singularities and state constraints in linear 
equations with integer coefficients are identified and if 
possible removed. The latter cannot be achieved with 
methods based on connection graphs, such as (Elmqvist 
and Mattsson, 2016) or similar techniques. 

When applied to the circuit in Figure 1, the method 
in section 5.3 gives the result that the following 
equation shall be removed since redundant: 
-L2.n.i - V.n.i = 0 

In order to make all potentials well-defined, the 
following equation is added: 
L2.n.v = 0 

In order to make the state constraints structurally 
visible, the equation 
-R1.p.i - R2.p.i - L1.n.i = 0 

is replaced by 
-L1.p.i + L2.p.i = 0 

5.2 Transformation to upper trapezoidal form 
The new approach is based on a utility algorithm to 
perform a fraction-free Gaussian elimination of linear 
algebraic equations with integer coefficients. The 
algorithm is a slight generalization of (Bareiss, 1968), 
see also (Turner 1995). Starting point is a linear 
algebraic equation system 
𝐀𝐀 ∙ 𝐗𝐗 = 𝐁𝐁, 𝐀𝐀 ϵ ℤ𝑛𝑛𝑛𝑛1 𝑥𝑥 𝑛𝑛𝑛𝑛2,𝐁𝐁 ϵ ℤ𝑛𝑛𝑛𝑛1 𝑥𝑥 𝑛𝑛𝑛𝑛2 (27) 

where 𝐀𝐀 and 𝐁𝐁 are sparse, rectangular integer matrices. 
The goal is to use fraction-free Gaussian elimination to 
transform (27) to upper trapezoidal form:  

�𝐀𝐀𝑢𝑢11 𝐀𝐀𝑢𝑢12
𝟎𝟎 𝟎𝟎 � ∙ �  𝐗𝐗𝑢𝑢1  𝐗𝐗𝑢𝑢2

� = �𝐁𝐁𝑢𝑢1𝐁𝐁𝑢𝑢2
� (28) 

where 𝐀𝐀𝑢𝑢11,𝐀𝐀𝑢𝑢12,𝐁𝐁𝑢𝑢1,𝐁𝐁𝑢𝑢2 are integer matrices and 
𝐀𝐀𝑢𝑢11 is quadratic, regular, and upper triangular with 
non-zeros on the diagonal, that is rank(𝐀𝐀) =
size(𝐀𝐀𝑢𝑢11, 1). Additionally, permutation vector 𝑝𝑝1 
describes the accumulated row interchanges of 𝐀𝐀,𝐁𝐁 
and permutation vector 𝑝𝑝2 describes the accumulated 
column interchanges of 𝐀𝐀 and row interchanges of 𝐗𝐗 
such that   𝐗𝐗𝑢𝑢 = 𝐗𝐗[𝑝𝑝2, : ]. Permutation vector 𝑝𝑝2 is 
selected such that if possible the "upper" part of 𝐗𝐗 is 
utilized in   𝐗𝐗𝑢𝑢1 (this is used in section 5.3). 

Algorithm 1 is a straightforward implementation of 
Gaussian elimination with full pivoting for sparse 
matrices. The key point are the two equations at the 
end with the "div(a,b)" operator where equation i is 
subtracted from equation k with a fraction free 
operation. Here, the non-trivial to derive property is 
used that the integer division div(a,b)=a/b has no 
remainder in this case. For details see (Bareiss,1968). 

Algorithm 1 
(Au,Bu,rk,p1,p2) = upperTrapezoidal(A,B) 
# Transform the rectangular linear system A*X=B 
# to upper trapezoidal form Au*X[p2,:]=Bu 
# A,B,Au,Bu are integer matrices 
# initialize variables 
(na1,na2) = size(A); nb2 = size(B,2); p1=1:na1; p2=1:na2 
Au = copy(A); Bu = copy(B); 
oldPivot  = 1 
# inspect all rows of Au 
for k = 1:na1 
   # search column wise for a pivot in Au[k:,min(k,na2):] 
   pivotFound = false 
   for k2 = k:na2 
      for (k1,pivot) in < row indices k1 and values pivot of 
                                    non-zero entries of column k2 > 
          if k1 >= k && pivot != 0  
             pivotFound = true 
             p1k = k1 
             p2k = k2 
             break 
          end 
      end 
      if pivotFound; break; end 
   end 
   # exchange rows/columns such that Au[k,min(k,na2)]≠0 
   if pivotFound 
      <exchange rows k and p1k of Au, Bu, p1, and 
        exchange columns k and p2k of Au and row p2k of p2 > 
   else  # submatrix Au[k:na1,:] has only zeros 
       rk = k-1            
       return (Au, Bu, rk, p1, p2) 
   end 
   # Subtract row k from rows k+1:na1 
   k1 = k+1 
   j = k1:na2 
   for (i,val) in < row indices i and values val of non-zero 
                           entries of column k > 
       if i >= k1 
          Bu[i,:] = div(pivot*Bu[i,:] – val*Bu[k,:], oldPivot) 
          Au[i,j] = div(pivot*Au[i,j] – val*Au[k,j], oldPivot) 
          Au[i,k] = 0 
       end 
   end 
   oldPivot = pivot 
end 
return (Au, Bu, rk, p1, p2) 

5.3 Identifying singularities in the model 
Starting point is the largest subset of equations of DAE 
(1) that is described by a linear algebraic system 

𝐀𝐀𝑥𝑥𝒗𝒗𝑥𝑥 + 𝐀𝐀𝑦𝑦𝒗𝒗𝑦𝑦 + 𝐀𝐀𝑐𝑐𝒗𝒗𝑐𝑐 + 𝑨𝑨𝑟𝑟𝒗𝒗𝑟𝑟 = 𝟎𝟎 (29) 

where 𝐀𝐀𝑥𝑥 ,𝐀𝐀𝑦𝑦,𝐀𝐀𝑐𝑐 ,𝐀𝐀𝑟𝑟 are sparse matrices with (scalar) 
integer elements of appropriate dimensions and 
𝒗𝒗𝑥𝑥,𝒗𝒗𝑦𝑦,𝒗𝒗𝑐𝑐 ,𝒗𝒗𝑟𝑟 are vectors of variables of (1). An 
element of these vectors may be a scalar, an array, or 
an instance of any data structure for which the 
operators "+", "-", "*" are defined (overloaded) as 
operations between instances of the same type and 
between an instance of the type and a scalar integer. 
Furthermore, it is assumed that within one equation the 
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variables are all of the same type and arrays have the 
same dimension sizes (so, one equation may state a 
relationship between [3,3] matrices, whereas another 
equation between [6] vectors, and yet another one 
between scalars). Since an equation can only depend 
on variables of the same type, equations (29) are 
basically a disjunct set of equations for different types 
that are analyzed conceptually in an independent way 
from each other. The various vectors have the 
following meaning: 

𝒗𝒗𝑥𝑥 Variables used in the derivative operator, so 
𝐝𝐝𝐝𝐝𝐝𝐝(𝑣𝑣𝑥𝑥,𝑖𝑖) appears in the model. 

𝒗𝒗𝑦𝑦 After removing equations (29) from (1), 
variables 𝒗𝒗𝑦𝑦 are no longer present in (1). 
Therefore, these variables must be computed 
from (29). For example, if 𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑝𝑝. 𝑣𝑣 − 𝑛𝑛. 𝑣𝑣 
and the connector variables 𝑝𝑝. 𝑣𝑣 and 𝑛𝑛. 𝑣𝑣 are not 
used otherwise in the model, they are part of 
𝒗𝒗𝑦𝑦. 

𝒗𝒗𝑐𝑐 Variables defined by a parameter expression. 
For example, if 𝑣𝑣0 = 5 and 𝑣𝑣0 is utilized in 
other linear equations with integer coefficients, 
then 𝑣𝑣0 is part of 𝒗𝒗𝑐𝑐. 

𝒗𝒗𝑟𝑟 All remaining variables that do not belong to 
one of the other three categories above. 

In a first step, equations (29) are restructured to: 

𝐀𝐀𝑦𝑦𝑦𝑦𝒗𝒗𝑦𝑦𝑦𝑦 = 𝐁𝐁𝑥𝑥𝑥𝑥(−𝒗𝒗𝑥𝑥𝑥𝑥) (30) 

with 

𝐀𝐀𝑦𝑦𝑦𝑦 = [𝐀𝐀𝑦𝑦 𝐀𝐀𝑟𝑟],   𝒗𝒗𝑦𝑦𝑦𝑦 = �
𝒗𝒗𝑦𝑦
𝒗𝒗𝑟𝑟� 

𝐁𝐁𝑥𝑥𝑥𝑥 = [𝐀𝐀𝑥𝑥 𝐀𝐀𝑐𝑐],   𝒗𝒗𝑥𝑥𝑥𝑥 = �
𝒗𝒗𝑥𝑥
𝒗𝒗𝑐𝑐� 

(31) 

With Algorithm 1 from section 5.2 

(𝐀𝐀𝑢𝑢,𝐁𝐁𝑢𝑢, 𝑟𝑟𝑟𝑟,𝑝𝑝1,𝑝𝑝2) = upperTrapezoidal(𝐀𝐀𝑦𝑦𝑦𝑦 ,𝐁𝐁𝑥𝑥𝑥𝑥) 

(30) can be transformed to upper trapezoidal form: 

�𝐀𝐀𝑢𝑢,11 𝐀𝐀𝑢𝑢,12
𝟎𝟎 𝟎𝟎

� ∙ �
  𝒗𝒗𝑢𝑢1
  𝒗𝒗𝑢𝑢2� = �𝐁𝐁𝑢𝑢1𝐁𝐁𝑢𝑢2

� ∙ (−𝒗𝒗𝑥𝑥𝑥𝑥) (32) 

where 𝐀𝐀𝑢𝑢,11 is a quadratic, regular, upper triangular 
integer matrix of size [𝑟𝑟𝑟𝑟, 𝑟𝑟𝑟𝑟] with non-zeros on the 
diagonal, 𝒗𝒗𝑢𝑢1 = 𝒗𝒗𝑦𝑦𝑦𝑦[𝑝𝑝2[1: 𝑟𝑟𝑟𝑟]] are 𝑟𝑟𝑟𝑟 elements of 𝒗𝒗𝑦𝑦𝑦𝑦 
and 𝒗𝒗𝑢𝑢2 = 𝒗𝒗𝑦𝑦𝑦𝑦[𝑝𝑝2[𝑟𝑟𝑟𝑟 + 1: ]] are the remaining 
elements of 𝒗𝒗𝑦𝑦𝑦𝑦. With 𝐁𝐁𝑢𝑢2 = [𝐁𝐁𝑢𝑢2,1 𝐁𝐁𝑢𝑢2,2], the lower 
part of (32) can be stated as: 

𝐁𝐁𝑢𝑢2,1𝒗𝒗𝑥𝑥 = 𝐁𝐁𝑢𝑢2,2(−𝒗𝒗𝑐𝑐) (33) 
Using Algorithm 1 again: 

(𝐀𝐀𝑢𝑢𝑢𝑢 ,𝐁𝐁𝑢𝑢𝑢𝑢, 𝑟𝑟𝑟𝑟𝑥𝑥,𝑝𝑝𝑥𝑥1,𝑝𝑝𝑥𝑥2) =
                 upperTrapezoidal(𝐁𝐁𝑢𝑢2,1,𝐁𝐁𝑢𝑢2,2) 

(33) can be transformed to upper trapezoidal form: 

�𝐀𝐀𝑢𝑢𝑢𝑢11 𝐀𝐀𝑢𝑢𝑢𝑢,12
𝟎𝟎 𝟎𝟎

� ∙ �
  𝒗𝒗𝑢𝑢𝑢𝑢1
  𝒗𝒗𝑢𝑢𝑢𝑢2� = �𝐁𝐁𝑢𝑢𝑢𝑢1𝐁𝐁𝑢𝑢𝑢𝑢2

� ∙ (−𝒗𝒗𝑐𝑐) (34) 

where 𝐀𝐀𝑢𝑢𝑢𝑢,11 is a quadratic, regular, upper triangular 
integer matrix of size [𝑟𝑟𝑟𝑟𝑥𝑥, 𝑟𝑟𝑟𝑟𝑥𝑥] with non-zeros on the 
diagonal, 𝒗𝒗𝑢𝑢𝑢𝑢1 = 𝒗𝒗𝒙𝒙[𝑝𝑝𝑥𝑥2[1: 𝑟𝑟𝑟𝑟𝑥𝑥]] are 𝑟𝑟𝑟𝑟𝑥𝑥 elements of 
𝒗𝒗𝑥𝑥 and 𝒗𝒗𝑢𝑢𝑢𝑢2 = 𝒗𝒗𝑥𝑥[𝑝𝑝𝑥𝑥2[𝑟𝑟𝑟𝑟𝑥𝑥 + 1: ]] are the remaining 
elements of 𝒗𝒗𝑥𝑥. 

From (32) and (34) the following conclusions can be 
drawn regarding singularities in the model equations: 

• If 𝐁𝐁𝑢𝑢𝑢𝑢2 is not the zero matrix, then there are 
constraints 𝐁𝐁𝑢𝑢𝑢𝑢2𝒗𝒗𝑐𝑐 = 𝟎𝟎 between the parameter 
expressions 𝒗𝒗𝑐𝑐. A tool may reject such a model. In 
the following it is assumed that 𝐁𝐁𝑢𝑢𝑢𝑢2 = 𝟎𝟎. 

• If 𝑟𝑟𝑟𝑟 + 𝑟𝑟𝑟𝑟𝑥𝑥 < length(𝒗𝒗𝑦𝑦𝑦𝑦), then the lower part of 
(34) are zero-equations and represent redundant 
equations. As a result, the original equations with 
row indices 𝑝𝑝1[𝑟𝑟𝑟𝑟 + 𝑝𝑝1𝑥𝑥[𝑟𝑟𝑟𝑟𝑥𝑥 + 1, : ]] can be 
removed since they can be expressed as a linear 
combination of the other integer equations. A tool 
may just remove these equations and print an 
information message that it removed them. 

• If 𝒗𝒗𝑢𝑢2 contains elements of 𝒗𝒗𝑦𝑦, then these 
variables can have an arbitrary value. For example 
assume that 𝒗𝒗𝑦𝑦𝑦𝑦 are scalar real variables, then (32) 
can be solved for 𝒗𝒗𝑢𝑢1:  
     𝒗𝒗𝑢𝑢1 = −𝐀𝐀𝑢𝑢,11

−1 �𝐀𝐀𝑢𝑢,12𝒗𝒗𝑢𝑢2 + 𝐁𝐁𝑢𝑢1𝒗𝒗𝑥𝑥𝑥𝑥� 
Therefore, for given states 𝒗𝒗𝑥𝑥𝑥𝑥 and given values of 
𝒗𝒗𝑢𝑢2, variables 𝒗𝒗𝑢𝑢1 can be uniquely computed. 
Note, since variables 𝒗𝒗𝑦𝑦 must be computed from 
(29) they can be arbitrarily set, if part of vector 
𝒗𝒗𝑢𝑢2. Since variables 𝒗𝒗𝑟𝑟 appear also in the 
remaining model equations, they need to be 
computed in these remaining model equations. A 
tool may either reject a model where 𝒗𝒗𝑢𝑢2 contains 
elements of 𝒗𝒗𝑦𝑦, or may set arbitrary values (say the 
null-element of the respective type) and print an 
information message. 

• The upper part of (34) can be formulated as:  
𝐀𝐀𝑢𝑢𝑢𝑢11𝒗𝒗𝑢𝑢𝑢𝑢1 = −𝐀𝐀𝑢𝑢𝑢𝑢,12𝒗𝒗𝑢𝑢𝑢𝑢2 − 𝐁𝐁𝑢𝑢𝑢𝑢1𝒗𝒗𝑐𝑐 (35) 

Since 𝐀𝐀𝑢𝑢𝑢𝑢11 is regular this means that 𝒗𝒗𝑢𝑢𝑢𝑢1 can be 
computed from 𝒗𝒗𝑢𝑢𝑢𝑢2 and 𝒗𝒗𝑐𝑐 and therefore 𝒗𝒗𝑢𝑢𝑢𝑢1 are 
(dependent) dummy states. A tool can either utilize 
this information directly and transform the model 
equations with this information, or the equations 
leading to (35), that is the equations of (29) with 
row indices 𝑝𝑝1[𝑟𝑟𝑟𝑟 + 𝑝𝑝1𝑥𝑥[1: 𝑟𝑟𝑟𝑟𝑥𝑥]], are replaced by 
equations (35). Since 𝐀𝐀𝑢𝑢𝑢𝑢11 is upper triangular, 
the constraints between the states are structurally 
visible and therefore index reduction with 
structural algorithms (see section 3) is possible. 

To summarize, with the transformation of the integer 
equations (29) of DAE (1) to upper trapezoidal form 
(32),(34) an important set of singularities can be 
exactly identified and if possible and desired removed. 
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6 Outlook 
With this paper new algorithms are provided to start 
from a high level modeling language like Modelica or 
Modia and generate code for standard Index-1 DAE 
integrators. The algorithms are designed to keep array 
data structures intact from the model language until the 
generated code. Furthermore, no equation systems are 
solved to transform to index 1 form and therefore the 
sparsity of the model equations is kept. As a 
consequence, sparse matrix methods can be utilized in 
the DAE integrator. 

In the paper it was not discussed how to initialize 
the index-1 DAEs. In principal similar techniques can 
be used as for Modelica models. Currently, in Modia it 
is experimented with a new form of initialization where 
start values 𝐱𝐱0(𝑡𝑡0−) can be provided that do not fulfill 
the constraints of (2), so 𝐟𝐟𝑐𝑐(𝐱𝐱0(𝑡𝑡0−), 𝑡𝑡0−) ≠ 0. Via Dirac 
impulses of the derivatives of the discontinuous start 
values, consistent start values 𝐱𝐱0(𝑡𝑡0+) are computed 
with the new technique of impulse handling for DAEs 
(2), developed in (Benveniste et al., 2017).  

In industrial applications often steady-state 
initialization is required. This is still a difficult topic 
and not yet satisfactorily solved. Typically, reliable 
steady-state initialization requires the use of a 
probability one homotopy method; see for example 
(Melville et. al., 1993; Sielemann, 2012). It is an open 
question how to restrict the special index-one DAEs 
(2) so that probability one homotopy methods can be 
applied. 

The goal is to further extend the algorithms and the 
Modia prototype in order to be able to simulate multi-
mode systems, where the number of equations and 
unknowns can change during simulation (for example 
to simulate drastic failure cases or perform end-to-end 
simulations of complicated scenarios). 
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