
Hierarchical Semantics of Modelica

Christoph Höger1

1Institute of Software Engineering and Theoretical Computer Science, Technische Universität Berlin, Germany
christoph.hoeger@tu-berlin.de

Abstract
We present a definition of syntax and semantics for Model-
ica’s hierarchical lookup. By using a context-independent
encoding of the static semantics of free variables, it be-
comes possible to define the evaluation of references within
a calculus based on substitution. Hence, all steps of evalua-
tion have a concrete syntactic representation. We augment
the calculus with a terminating evaluation and a semantics-
preserving translation to a basic λ -calculus.
Keywords: Semantics, Classes, Compilation

1 Introduction
In current Modelica, there is no way to express the defini-
tion of a variable as a purely syntactic property, indepen-
dent of the context in which it might be used. Its definition
is obtained as part of the dynamic semantics of the flat-
tening process. This effectively renders static analysis of
models and packages impossible. Furthermore, there is
no formal method to obtain its meaning from the a found
definition in the context of a simulation model, as the dy-
namic semantics of hierarchical elements are defined only
informally.

This paper attempts to improve this situation by the
means of a compositional core calculus of classes, MCL.
In this language, we define syntactic elements for the ex-
pression of static properties of variables in a class. The se-
mantics of Modelica-style hierarchical classes is integrated
within the framework of the classic λ -calculus. This inte-
gration is inspired by the treatment of modules by Pierce
(2005). For the evaluation, we focus solely on the problems
mentioned above. For a discussion of the relation between
model elaboration and the λ -calculus, we refer to earlier
work(Höger 2016). In a final step, we present a translation
that replaces the hierarchical elements with semantically
identical non-hierarchical terms. This shows how a hier-
archical model can be translated into a simpler functional
language.

The rest of this paper is organized as follows: An intro-
duction into Modelica’s scoping and hierarchical organiza-
tion leads to the definition of the hierarchical core calculus
of MCL. This is followed by a graphical interpretation
of the hierarchical environment and consequently its se-
mantics. The paper concludes with a transformation of the
hierarchical aspects to more basic elements of the language.
This transformation is shown to be faithful in the sense that
it preserves the evaluation semantics.

2 Modelica Scoping and Hierarchies
In its simplest form, a Modelica class serves as a container
for a sequence of declarations. These may introduce con-
stants, parameters, unknowns or declare components that
are instances of other classes. The meaning of variables
in the right-hand sides of these declarations is somewhat
intricate as the example in Listing 1 shows.

The declaration of the constant x in class A refers to
two free variables, y and z. Class A is a child of class B,
which is in turn a child of C in the class-hierarchy. Hence it
“sees” all declarations1 of its parent classes. In the classical
sense, B is part of A’s lexical scope. Therefore, z is found
directly in the surrounding scope. Note that the definition
of constant z (the literal 21) is syntactically placed after A.
The scope of a binding is independent from the order of
declarations. Variable y is not defined inside B. The next
candidate is C, where it is defined as modelicaB.z.

Such a composite name gives access to elements down-
wards the hierarchy. In a first step, B is found as before
in the scope of C. The result of this search is then used to
search for z, which is defined as 21. Hence the result of
evaluating C.B.A.x should yield 42.

Although this kind of scoping might seem pretty stan-
dard, there is a subtle difficulty embedded in this seemingly
simple principle. In Modelica, there is no (syntactic) differ-
ence between looking up a class (e.g. B) and its fields (e.g.
z). What might seem like an elegant unification, turns out
to be a source of major complication in combination with
inheritance.

2.1 Inheritance and Modifications
Lexical scoping as it is used above is still a pretty straight-
forward matter: After all, the environment in which to look
for the definition of a variable is determined by the syn-
tactical composition of classes. The complexity rises dras-
tically however, once inheritance (expressed as extends
statements) comes into play:

class D
extends C.B(z=2);
constant Integer x = A.x;

end D;

class C . . . end C;

1At least the ones with the proper variability

DOI
10.3384/ecp17132703

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

703

Listing 1. Hierarchical Lookup

class C
constant Integer y = B.z;
class B

class A
constant Integer x = y + z;

end A;

constant Integer z = 21;
end B;

end C;

C.B.A.x

z

B.z
y

In the class D above, with C left unchanged, what is the
value of D.x? Since A is inherited in D from C.B, it is
tempting to assume the answer is, again, 42. Instead, the
returned value is 232.

The reason for this is shown in Listing 2. In the first step,
A is found to be inherited from the base class C.B. This
lookup succeeds immediately without further involvement
of inheritance. Hence, A.x is resolved by looking for x in
B. This class contains the same definition of x as before.
Accordingly z and y need to be looked up again. Variable z
is again looked up in its immediately enclosing scope. This
time, this scope is not provided by A, but by the inheriting
class D. Therefore the resulting value is 2.

In an interesting twist, y is not subject to this modifi-
cation. Since its lookup passes through C and only then
returns to the definition of z the inheritance is discarded.
The resulting value is therefore found in the lexical scope
of A, and hence yields 21. The overall evaluation yields 23.

This example demonstrates an important fact about
Modelica-classes. The site of the definition of a free vari-
able is not a syntactic property of the class. Instead, it
depends on the context in which this class is used.

2.2 The Principle of Open Recursion
This context is the result of evaluating all relevant super
classes. Therefore, the definition of lookup has to be part
of the evaluation of classes and vice versa. In Modelica
there is no explicit ordering between declarations. Due
to the existence of inheritance and because classes are
looked up in the same way as other declarations, such an
ordering cannot be found without knowledge of the context
of the class. Both the construction of the context and the
evaluation of class references are recursively linked.

In classical object-oriented languages, this principle is
called open recursion(Aldrich and Donnelly 2004): Each
method has access to a special variable (often called this
or self). Methods are always invoked from a concrete
object (sometimes called the reciever of a message). This
object then becomes the definition of the special variable
during evaluation of the method’s body (the special vari-
able is late bound). Free variables in the method are inter-
preted by method invocation on the special variable. This

2as discussed in https://trac.modelica.org/Modelica/ticket/2013

principle yields an implementation of recursion, since the
method itself is an element of the receiving object. It is
open, since the method might be part of different concrete
objects (and invoke different siblings on each). Hence, it is
possible to change the behavior of all methods of an object
by exchanging only one method. The same concept can be
used to explain the lookup inside Modelica’s classes, when
it is applied not only to one, but possibly many special
variables.

class D
constant Integer z = 2;
extends up(1).C.B;
constant Integer x = this.A.x;

end D;

class C
constant Integer y = this.B.z;
class B
class A

constant Integer x = up(2).y + up(1).z;
end A;

constant Integer z = 21;
end B;

end C;

In the listing above, references to the context have been
codified by two kinds of special variables: this denotes a
reference to the immediately enclosing class, while up(i)
expresses access to the i-th enclosing class (hence up(0)
is the same as this, but less readable). The benefit of such
a form lies in the fact that it eliminates any free variables
and still allows to use the class in different contexts.

3 MCL
In order to focus the discussion on the hierarchical seman-
tics by the means of such special variables, it is useful to
define a minimal calculus and ignore the any feature of
Modelica that does not directly contribute to the discus-
sion. To this end we define MCL, a small core calculus
that embeds hierarchical term into the classical minimal
λ -calculus. Besides the more concise representation, such
a reduction allows to express the complete domain of dis-
course. In the following sections, all relevant elements
can be expressed in the form of expressions in the core

Hierarchical Semantics of Modelica

704 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132703

Listing 2. Hierarchical Lookup with Inheritance

class D
extends C.B(z=2);
constant Integer x = A.x;

end D;
class C

constant Integer y = B.z;
class B

class A
constant Integer x = y + z;

end A;

constant Integer z = 21;
end B;

end C;

D.x

A.xz

B.z
y

language. There is no need to resort to externally (and
imprecisely) defined entities like tables, environments or
universes of classes.

3.1 Notational Conventions
Languages are defined in a simple BNF-form: Nontermi-
nals (e.g. t, v are expressed with the same small italic
letters as meta-variables of the corresponding syntactic sort
(e.g. we will use t to denote both the set of terms and a
variable from that set). Productions (e.g. t ::= λx.t | x)
map a nonterminal (to the left of the ::=) to clauses con-
sisting of nonterminal and terminal symbols. Clauses are
separated by a | . Each clause is one possible derivation
of the left hand side. Terminal symbols (e.g. ,true,if) are
written in a non-proportional font.

Partial functions are univalent relations {x 7→ y}. These
relations can be augmented using the ⊕-operator, borrowed
from the specification language Z:

p⊕q ∧
= {x 7→ y | x 7→ y ∈ p and x /∈ dom(q)}∪q

JtK∆ denotes the function ∆ applied to t. In order to
enhance readability, these (recursive) functions are defined
using pattern matching on their arguments: Jt1 t2K∆ means
the application of ∆ to one term formed by the juxtaposition
of two (possible distinct) terms (i.e. the term representing
the application of t1 to t2). If multiple arguments are passed
to a semantic function, they are separated by commas.
Meta variables are bound in the patterns or corresponding
where-clauses. When necessary, we consider each function
as overloaded on different syntactic sorts, e.g the function
Π can be applied to recursive definitions F as well as the
fields of a class F .

Sequences are abbreviated by an overline over the name
of the contained meta variables, e.g. t describes a sequence
t1 . . . tn. The empty sequence is ♦. Non-empty sequences
are written as pairs of a value and the remaining sequence,
separated by a double colon, e.g. s :: t describes the se-
quence s, t1, . . . , tn. The operator × maps a semantic func-
tion on a sequence, e.g. f ×F yields a sequence where

every element is the result of applying f to the correspond-
ing element in Φ.

In order to not confuse meta-level equality (e.g. of terms)
with its object-level counterpart (e.g. in an equation), we

write a ∧
= b to indicate the former (and a

∧
6= b for the oppo-

site).

3.2 Syntax
The syntax of MCL distinguishes between hierarchical
terms h and proper terms t (Figure 1). There are five
variants of hierarchical terms: The special variables up(i)
refer to the i-th enclosing class. Literal classes C are a
list of fields F bracketed in special curly braces, {|F|}.
A class field can either contain a hierarchical class (e.g. a
child class) (L = h) or a value (l = t. We presume that
each class-label L can be distinguished from each label l:
L∩ l ∧

= /0. A hierarchical node v denotes a class containing
the fields F as a hierarchical child of the enclosing class
denoted by π , written {|F in π|} (the environment is
thus encoded as a list of nodes and each node contains its
own environment). Explicit Modifications {|h with F|}
override the fields defined in the class described by hterm
with the fields in F .

Access to the field L of a class requires an explicit no-
tion of the corresponding super class in a reference R:
h1.super(h2).L. Here, h1 refers to a class extending h2
which in turn describes the definition-site of the declaration
labeled with l. The access reads as: “Get the field labeled
with L in the class h2 extended by h1”. This makes the
interface of a class immediately visible (since all inherited
fields have to be defined locally as forward references)
and is a necessary precondition for a substitution-based
semantics. If no super class shall be referenced directly,
both parts of a reference are equal. Since this is a common
case, we introduce the abbreviation h.L ∧

= h.super(h).L
to enhance the readability.

Terms t consist of the standard elements of the λ -
calculus extended with non-strict conditional, and an ex-
plicit fixed point operator fix (which ranges over multiple,

Session 10B: Modelica Language & Tools

DOI
10.3384/ecp17132703

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

705

Core Terms:

t ::= x | v | t t | t ◦ t | r | if t then t else t
r ::= h.super(h).l

Values:

v ::= b | λx.t | fix x in F | true | false | Z | Q

F ::= x = λy.t

Hierarchical Terms:

h ::= up(i) | C | ν

| {|h with F|} | R
R ::= h.super(h).L

ν ,π ::= {|F in ν|}

C ::= {|F|}

F ::= L = h | l = t

Figure 1. MCL basic syntax

mutually recursive functions in F). Values v ⊆ t are the
evaluated normal forms. Builtin primitives b are booleans,
rational numbers, integers and strings. The corresponding
binary operators are summarized in ◦.

A value field can be accessed from a class using a
notation similar to the class-selection: A reference r ∧

=
h1.super(h2).l refers to the field labeled with l in class
h2 extended by h1. Again we allow the convenient abbrevi-
ation h.l ∧

= h.super(h).l
Capture-avoiding substitution of variables by a partial

function p is written as [p]t. The usual conditions for fresh-
ness of bound variables have to apply to the codomain of
the partial function. Substitutions do not pass over refer-
ences, i.e. [p]r ∧

= r. We write JtKfv to denote the set of free
variables in a term. Variables are bound by abstraction and
the mutually recursive functions (plus their arguments) of
a fixed-point. In all other cases, the set of free variables is
the union of the free variables of all sub terms.

A context is a term with a “hole” into which another term
is plugged. This hole is expressed as a special variable �.
By convention � is never bound in any term. Plugging a
term t into a context s is then obtained via substitution
[� 7→ t]s.

4 The Hierarchical Environment
The semantics of hierarchical terms can be seen as the re-
duction to a normal form of evaluated classes. We will
motivate this normal form by a somewhat informal inter-
pretation of the process. For reasons that will become clear
in a moment, call an evaluated class a node (expressed by
the syntactic sort ν). Nodes are created as the combination
of a literal class C with an environment.

The environment inside a node has one additional entry,
mapping 0 to the node itself. All other entries link back
to the original environment (just one level higher). In a
certain sense, this definition forms an inverted view of the
syntax tree, as each node gives access to an ordered set
of children (which may be its parents in the syntax tree).
Environments are forests of such trees and literal classes
are node labels. (Hence the name node for the elements of
this structure.)

Evaluation of hierarchical terms can be defined by the
resolution of special variables and the three mutually recur-

sive operations, selection, search and evaluation. During
evaluation, a special variable i is resolved in a given envi-
ronment E to the i-th entry of the environment.

JE,up(n)Keval
∧
= E(n)

JE,h.LKeval
∧
= JJE,hKeval,LKselect

JE,CKeval
∧
= {|C in E|}

JE, tKeval
∧
= . . .

Composite names (e.g. up(2).z) are evaluated from left
to right by selecting the label. Evaluating a literal class
with a given environment yields a context by appending
that literal class to the current environment. We ignore the
evaluation of proper terms for now.

Jν ,LKselect
∧
= JJν ′Kenv ⊕{0 7→ ν},hKeval

when Jν ,LKsearch
∧
= ν

′,h

In order to select a field from a class, its definition has to
be found in the class itself or in a super class. The resulting
term is then evaluated under a new environment (obtained
via env from ν ′). By setting the 0-th environment entry
to the receiver, the special variable this is given a new
meaning. If the definition is found in the receiver itself, i.e.
ν

∧
= ν ′, the change has no effect.

Jν ,LKsearch
∧
=

ν ,h if L = h ∈ JνKclass

ν ′,h′ if ν extends hS

Jh,JνKenvKeval
∧
= νS

JνS,LKsearch
∧
= ν

′,h′

A definition is searched recursively: If the field is a
literal child, its right hand side is searched. Otherwise,
the super classes of the context are evaluated and search
continues there.

4.1 Graphical Interpretation
As an example, consider the classes C and D from above
and the evaluation of D.x. Since all classes in that example
have a unique name, this name is used in abbreviations as

Hierarchical Semantics of Modelica

706 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132703

a subscript, i.e. νC is the obtained from evaluating class C,
EC is its environment and CC denotes its literal class.

To support the interpretation of class values as nodes in
a tree, they are drawn as directed graphs. Each node can
be interpreted as such a directed graph with edge labels
to indicate the ordering of its enclosing classes. A node
label indicates the literal class. The order of nodes in an
environment is drawn as graphs with two kinds of vertices.
Each entry is represented by a circular node that is labeled
with a natural number and has exactly one outgoing edge
to the corresponding element of the environment. The
top-level environment is drawn as follows:

Eroot
∧
= . 0

(1)

Creating new nodes from a literal classes inside an envi-
ronment is achieved by adding a new node (labeled with
the literal class), replacing the special nodes with edges
from that node to their respective target and increasing their
label by one:

{|CD in Eroot|}
∧
= νD

∧
= D .1

(2)

A node implies an environment on its immediate chil-
dren (function env). This environment is obtained by map-
ping the node itself to 0 and adding an entry for each
outgoing edge:

JνDKenv
∧
= ED

∧
= D .

0 1

1
(3)

Classes C and B are evaluated in a similar style to D in 2:

νC
∧
= {|CC in Eroot|}

∧
= C .1

(4)

νB
∧
= {|CB in EC|}

∧
= B C .1

2

1

(5)

Using these classes, a simple evaluation can be pro-
cessed as follows:

JνC,yKselect
∧
= JEC,up(0).B.zKeval
∧
= JJνC,BKselect,zKselect
∧
= JνB,zKselect

∧
= JEB,21Keval

∧
= 21

(6)

Similarly, the super class of D can be evaluated:

JED,up(1).C.BKeval
∧
= JJνroot ,CKselect,BKselect
∧
= JνC,BKselect

∧
= νB

(7)

With these observations it is now possible to understand
the evaluation of D.x. In a first step, the field is found in
the node itself:

JνD,xKsearch
∧
= νD,this.A.x (8)

There is no field A in CD. The search continues in the
super class, νB. Here, the field is found:

JνD,AKsearch
∧
= JνB,AKsearch by (7)
∧
= νB,CA

(9)

CA is found in the super class νB. The evaluation envi-
ronment is constructed from both the super class as well as
the extending class:

ES
∧
= JνBKenv ⊕{0 7→ νD}

∧
= D

0

C

1

.

2

1

1

(10)
Evaluation of the literal class then appends CA to the

nodes of the environment. This node in turn has its own
environment as usual:

EAS
∧
= JνASKenv

∧
= A

0

D

1

C

2

.

3

1

2

3

1

1

(11)
Resolving up(2) and up(1)in EAS yields νC and νD,

respectively. Hence, y and z can be selected:

JEAS,up(2).yKeval
∧
= JνC,yKselect by (11)
∧
= 21 by (6)

(12)

JEAS,up(1).zKeval
∧
= JνD,zKselect by (11)
∧
= JED,2Keval

∧
= 2

(13)

This demonstrates two important aspects: First, the mod-
ification in CD has affected the evaluation as intended. And
second, the inheritance is “forgotten”, when the lookup
passes the correspoding lexical scope. The evaluation of y
takes place in νC without further changes. In conclusion,
the result is 23, as expected:

JνD,xKselect
∧
= JED,this.A.xKeval by (8)
∧
= JJνD,AKselect,xKselect by (3)
∧
= JJES,CAKevalKselect by (9)
∧
= JEAS,up(2).y+up(1).zKeval by CA
∧
= JEAS,21+2Keval

∧
= 23 by (12,13)

Session 10B: Modelica Language & Tools

DOI
10.3384/ecp17132703

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

707

VAL

v ⇓ v

OP

v3
∧
= (arithmetic)v1 ◦ v2
t1 ⇓ v1 t2 ⇓ v2

t1 ◦ t2 ⇓ v3

IF-TRUE
t1 ⇓ true t2 ⇓ v

if t1 then t2 else t3 ⇓ v

IF-FALSE
t1 ⇓ false t3 ⇓ v

if t1 then t2 else t3 ⇓ v

APP
t2 ⇓ v1

t1 ⇓ λx.t3
[x 7→ v1]t3 ⇓ v2

t1 t2 ⇓ v2

FIXAPP
t1 ⇓ fix x in F t2 ⇓ v2

x 7→ λy.t3 ∈ JFKΠ

[JFKµ]([y 7→ v2]t3) ⇓ v
t1 t2 ⇓ v

NODE

ν ⇓h
ν

ROOT

{|F|} ⇓h {|F in ♦|}

HSELECT

h1 ⇓h
ν1 h2 ⇓h {|F in π|}

L 7→ h3 ∈ JFKΠ Jν1,π,h3KΦ ⇓h
ν3

h1.super(h2).L ⇓h
ν3

SELECT

h1 ⇓h
ν1 h2 ⇓h {|F in π|}

l 7→ t ∈ JFKΠ Jν1,π, tKφ ⇓ v
h1.super(h2).l ⇓ v

MOD

h ⇓h {|F1 in π|}
dom(F2)⊆ dom(F1)

JF3KΠ

∧
= JF1KΠ ⊕ JF2KΠ

{|h with F2|} ⇓h {|F3 in π|}

Figure 2. Evaluation semantics

4.2 Dynamic Semantics
Figure 2 depicts the rules of the dynamic semantics of MCL
in big-step or natural(Kahn 1987) style. A term t evaluates
to a value v, iff both are related by a reduction relation
t ⇓ v. Erroneous terms are identified by not being related
to some value. All elements of ⇓ are defined inductively
by inference rules.

In order to simplify the notation of sequential constructs,
it is useful to define a mapping between concrete syntax and
partial functions. Each sequence can be seen as a partial
function, mapping its left-hand elements to the correspond-
ing right-hand side. This conversion is implemented with
the function Π.

JFKΠ

∧
= {x1 7→ λy1.t1}⊕ . . .⊕{xn 7→ λyn.tn}

where F
∧
= x1 = λy1.t1, . . . ,xn = λyn.tn

J♦KΠ

∧
= /0

Jl = t :: FKΠ

∧
= JFKΠ ⊕{l 7→ t}

JL = h :: FKΠ

∧
= JFKΠ ⊕{L 7→ h}

JFKµ

∧
= {xi 7→ fix F in xi | xi ∈ dom(JFKΠ)}

Rule APP is the standard application via substitution. OP
implements binary operators on builtin primitives; it is
actually a family of rules with one element for each builtin
operator. Rules IF-FALSE and IF-TRUE implement non-
strict conditionals.

Mutually recursive functions F ∧
= xi = λyi.ti are imple-

mented via the explicit fixed point term fix x in F, the
special function µ and rule FIXAPP. In order to evaluate
a recursive function, first the argument has to be evalu-
ated. This argument is then substituted into the body of
the function, followed by a substitution of the group itself,
as defined by µ . Due to the nature of natural semantics,
divergence cannot be distinguished from a stuck term.

The hierarchical semantics of MCL is embedded into the
proper evaluation (but not vice-versa). In a certain sense,
classes play the role of modules. Evaluation of a hierar-
chical term h to a hierarchical class ν

∧
= {|F in π|} with

parents π1 . . .πn is written h ⇓h ν . Rule SELECT augments
the evaluation relation ⇓. Hierarchical nodes are already in
normal form (rule NODE). An empty literal class evaluates
to a root node (rule ROOT).

4.2.1 Selections and Inheritance

Selecting a child class via HSELECT or SELECT relies on
the search of the corresponding definition. This is imple-
mented by a partial function from labels to hierarchical
terms. Depending on the context, either a class label L
or a value label l is looked up. Notably, this definition
of the search operation is not recursive. It relies on the
encoding of inherited fields as references from this to the
corresponding super class.

MCL does not allow for unqualified inheritance of names:
Instead of a single extends statement, all inherited fields
have to be explicitly present in the base class. The def-
inition then forwards to the super class with the second
argument of the reference:

A = this.super(up(1).Y).A;
a = this.super(up(1).Z).a;

In the example above, class A and the value a are in-
herited from classes Y and Z, which are found in the outer
scope. The delegation is resolved by either HSELECT or
SELECT. Multiple levels of inheritance are then expressed
by a chain of such delegations. This style decouples the set
of inherited elements from the definitions in the super class
and allows for a more selective approach (e.g. it becomes
possible to express the resolution of multiple inheritance
of fields with the same name).

Hierarchical Semantics of Modelica

708 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132703

J_,_,νKΦ

∧
= ν

Jν ,π,up(0)KΦ

∧
= ν

J_,π,up(n+1)KΦ

∧
= πn+1

J_,♦,up(n+1)KΦ

∧
= up(n+1)

Jν ,π,{|F|}KΦ

∧
= {|F in ν :: π|}

Jν ,π,{|h with F|}KΦ

∧
= {|Jν ,π,hKΦ with f ×F|}

where JL = hKK f
∧
= L = Jν ,π,hKΦ

Jl = tK f
∧
= l = Jν ,π, tKφ

Jν ,π,h1.super(h2).LKΦ

∧
= Jν ,π,h1KΦ.super(Jν ,π,h2KΦ).L

Jν ,π,h1.super(h2).lKφ

∧
= Jν ,π,h1KΦ.super(Jν ,π,h2KΦ).l

Jν ,π,xKφ

∧
= x Jν ,π,λx.tKφ

∧
= λx.Jν ,π, tKφ Jν ,π, t1 t2Kφ

∧
= Jν ,π, t1Kφ Jν ,π, t2Kφ . . .

Figure 3. The Fold Function

In order to adhere to the principle of open recursion
between fields of a class, the special variables in a found
term are resolved using the fold operators Φ : h×ν×h→ h
and φ : h× ν × t → t before evaluation. These mutually
recursive functions (Figure 3) take three arguments: An
evaluated class ν represents the tip of the environment (i.e.
the self-instance), π is the list of hierarchical parents of the
super class containing the definition of the current term,
and the third argument is the input that is being folded. Φ

expects and returns an hierarchical term h while φ works
on plain terms t.

In the case of plain terms, the result of folding is simple:
φ is applied on the sub terms or returns its input unchanged
if the argument is primitive. Value references are processed
by folding the hierarchical sub terms with Φ.

Folding hierarchical terms resolves the special variables
up(i) (thus implementing the environment directly via sub-
stitution): The special variable up(0) (the this-variable)
is replaced with the self -instance (the first entry of the
environment). Other special variables are looked up ac-
cordingly. If the environment is empty, the result is left
unresolved. References and modified classes are folded
by folding their corresponding sub terms. In the case of
modifications this ensures that a modified field is evalu-
ated in the context of the modification site (and not in the
context of the modified class). Literal classes are turned
into nodes by storing the environment alongside their fields.
Contrary to modifications, their fields are not subject to
further folding. This ensures that child classes retain their
own context, when a field is selected from that child class.
Nodes are left unchanged by the fold function.

4.3 Modifications and Redeclarations
MCL supports both redeclarations and modifications. The
former are implemented via overriding of inherited meth-
ods (thus, there all fields are considered replaceable). Mod-
ifications differ from overriding in their scope — modifica-
tions live outside of the modified class. Each modified field
must exist in the modified class. It is not possible to add a
field via a modification. The modification of a class h with
a sequence of fields F results in a class containing the mod-
ified fields merged with the result of the evaluation (rule
MOD). Merging is implemented by lifting the fields into

partial functions, augmenting the original function with the
new fields and lowering the result into a sequence of fields.

5 Translation of References
The specification of Modelica require the evaluation of
names only when necessary; i.e. the lookup of classes,
functions, types and variables is always driven by the at-
tempt to flatten a particular class. We take a slightly differ-
ent stance, and demand that all references can be looked
up strictly. The goal is to replace all references (inside
a certain term) with their definitions (and transitively all
references in them). The resulting term is then free of any
hierarchical references and can be evaluated as usual. This
technique allows to consider lookup and flattening as com-
pletely separate parts of the semantics (and gives reason to
consider the former as part of the static semantics).

5.1 Evaluation of Hierarchical Terms
The definition of ⇓h is algorithmic, a naive implementa-
tion will however not always terminate due to the open
recursion. In particular, evaluating the subterms of a class
reference might require evaluation of the same class refer-
ence:

{| class A = this; x = this.A.x |}.x

In the example above, a naive interpreter will repeatedly
attempt to evaluate the class reference this.A.x. This is
not a particularity of MCL, as the following example shows:

class A
model B extends C; end B;
model C extends B; end C;
B.Foo b;

end A;

This simple model cannot be flattened (as there is no class
definition for the component b). Yet, the attempt drives the
leading free implementations OpenModelica (in version
1.11.0) and JModelica (version 1.17) into an endless loop,
eventually ended by a stack overflow. In a realistically
sized model, the user can only speculate what causes such
a crash and, should the relevant loop be optimized to a
tail-recursive implementation, might not even encounter a
crash but a “frozen” implementation.

Session 10B: Modelica Language & Tools

DOI
10.3384/ecp17132703

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

709

Thus it is necessary to restrict the computation of ref-
erences in a way that guarantees termination and retains
a valid result for a meaningful subset of the terminating
nodes. It is hardly constructive to reject all recursive rela-
tions between classes, as for instance recursive functions
would fall under the same rule (functions are specialized
classes in Modelica). Instead, the restriction should only
prevent divergence during lookup. This can be achieved by
only attempting to evaluate an hierarchical reference once
for any given environment.

We assume that each literal class is labeled with a unique
identifier from a set L ⊆ N. We write F i to indicate a
class with id i. The syntactic depth of a literal class is
the number of syntactically visible enclosing classes. It
is easy to see that this number is invariant during evalu-
ation (otherwise, special variables might be invalidated).
Each node is only valid when it has precisely the correct
amount of enclosing classes for its literal class. A node
that fulfills this requirement is called context correct. The
set of context correct nodes is not finite, though. Con-
sider two distinct literal classes F1 and F2 with depths 0
and 1, then {|F2 in {|F1 in ♦|}|} is context correct.
But so is {|F2 in {|F2 in {|F1 in ♦|}|}|} and so
on. Obviously, hierarchies with the repeated occurance of
the same literal class are problematic. It is thus necessary
to find a syntactic criterion to rule out such strange loops.

The directed graphs used in Section 4 can be formalized
as directed multigraphs (V,E) with vertices V ⊆ L repre-
sented by the labels of literal classes and edges as triples
of one outgoing and one incoming vertex together with a
natural number E ⊆ L×L×N. The identity of an edge is
defined by its source, its destination and its number. The
usual terms from (multi) graph theory (reachability, cycles,
etc.) apply.
Definition 1 (Graph Representation of Nodes and Envi-
ronments). The directed multigraph of a node is the ver-
tex labeled with the literal class of the node linked to the
graphs of all parents by ordered edges. The graph of an
environment (i.e. a list of nodes) is the union of the graphs
of each node (where the union of graphs is the union of
their components).

J{|Fu in π|}Kgr
∧
= ({u}∪V,P∪E)

where P ∧
= {(u, pi, i) | pi

∧
= JπiKL }

(V,E) ∧
=

⋃
i∈1...|π|

JπiKgr

The set of possible results of this transformation is finite,
when both the set of labels and edges are finite. Both
conditions are trivially fulfilled by graphs created from
context correct nodes, since each node is in itself a finite
structure, the syntactic depth of each node is limited by the
syntactic structure of the source program, and each source
program is labeled by a finite set of labels.

Multigraphs that do not contain any cycles and have a
distinguished root node can be unambiguously transformed

into a node, when the outgoing edges of a each node are
labeled consecutively with the numbers ranging from 1 to
the depth of the corresponding literal class. Such a graph is
said to be context correct. This transformation is bijective.
Definition 2 (Admissible Lookups). A node is admissi-
ble, iff its graph representation is a context correct, rooted
multigraph. An environment π is admissable, iff all con-
tained nodes are admissable and the lookup of a label
L in an environment is admissible iff the environment is
admissible:

ν admissible ⇐⇒ JνKgris rooted and context correct
π admissible ⇐⇒∀i ∈ 1 . . . |π| πi admissible

〈ν :: π ·L〉 admissible ⇐⇒ ν admissible∧π admissible

If all nodes are rejected that do not meet these simple
criteria, the set of admissible nodes is finite. This allows to
evaluate any hierarchical term without in a finite amount
of steps (by checking for repetitions). As a side effect,
all strange loops (i.e. classes that contain themselves) are
ruled out, but classes that merely refer to each other are
still allowed.
Lemma 1 (Finiteness of Admissible Lookups). For any
given finite labeling of literal classes, and a finite maxi-
mal depth of classes the set of admissible lookups is finite.
admissable nodes is finite.

Proof. Admissible nodes are finite due to their injective
mapping to a context correct, rooted multigraph over the
(finite) labeled vertices. Admissible (finite) environments
and lookups are products of finite sets.

Evaluation of hierarchical terms can be implemented in
a terminating, total function H. This function follows the
definition of ⇓h by construction. The sole difference lies in
the “memory” G, a set of admissible lookups. No lookup
is ever repeated, hence the function terminates.

JG,νKH
∧
= ν

JG,{|F|}KH
∧
= {|F in ♦|}

JG,{|h with F2|}KH
∧
= {|F3 in π|}

if JG,hKH
∧
= {|F1 in π|}

dom(F2)⊆ dom(F1)

JF3KΠ

∧
= JF1KΠ ⊕ JF2KΠ

JG,h1.super(h2).LKH
∧
= JG′,Jν1,π,hLKΦKH

if JG,h1KH
∧
= ν1

JG,h2KH
∧
= {|F in π|}

L 7→ hL ∈ JFKΠ

〈ν1 :: π ·L〉 admissible /∈ G

G′ ∧
= G∪{〈ν1 :: π ·L〉}

JG,hKH
∧
= in any other case

Hierarchical Semantics of Modelica

710 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132703

5.2 Lookup of References
The definition of H immediately yields an algorithm for the
lookup of references, L. A lookup is successful if both the
super class and the base class can be evaluated successfully,
the resulting environment is admissable and it contains a
matching element. The result of a successful lookup maps
the environment and looked up label to the folded result
term. An error is indicated by the mark .

Jh1.super(h2).lKL
∧
= 〈ν1 :: π · l〉 7→ Jν1,π, tKφ

if J /0,h1KH
∧
= ν1

J /0,h2KH
∧
= {|F in π|}

l 7→ t ∈ JFKΠ

JrKL
∧
= otherwise

This allows to to lookup all references in a term, includ-
ing those references that occur transitively as the result of
a successful lookup. Such an exhaustive search is achieved
by repeated applications of a one-step search function G to
an intermediate result set R:

J KG
∧
=

JRKG
∧
=

 if ∃[� 7→ r]s ∈ img(R) s.t. JrKL

∧
=

R∪{JrKL | [� 7→ r]s ∈ img(R)} otherwise

The exhaustive search terminates, when a fixed point is
reached. This is guaranteed due to the finite set of admissi-
ble environments. G is also inflationary. This guarantees
the existence of the conditional fixed point starting from a
set R (see Pepper and Hofstedt 2006, chapter 10).
Lemma 2 (Fixed Point of G). The ascending Kleene chain
of G has a least fixed point.

Proof. The partial functions (and error marker) obtained
by G form a complete partial order (cpo) under the subset
relation, i.e. R1 ≤ R2 ⇐⇒ R1 ⊆ R2 with as top element,
i.e. R ≤ , because the set of admissible environments (the
domain of each R) is finite and adding a top element to
a cpo yields a cpo. Function G is also Scott-continuous
(the least upper bound of any chain is the set-union in the
absence of errors and the error otherwise).

5.3 Transformation
A reference must be evaluated in order to look up its corre-
sponding definition. This does not introduce any errors, if
the underlying search result is indeed a fixed point, though
(as all contained references have already been evaluated at
least one). The definition of a reference might (after sev-
eral steps of lookup) depend on the reference itself. This
implicit recursion has to be transformed into a proper fixed
point. In order to do so, all definitions have to be regarded

as functions, since MCL does not allow for any other recur-
sive definitions. This is easily achieved by wrapping them
into a “thunk” (a function taking an unused argument).

Function C maps each found definition to a structurally
similar term where all references are replaced with their
corresponding name. It is assumed that the lookup result is
arbitrarily ordered.

Definition 3 (Transformation). The transformation re-
places all references with a recursive function that is ob-
tained by the lookup closure of its definition. The closure
replaces each references with the name of its definition.

JR, tKC
∧
= t if r /∈ t

JR, [� 7→ r]tKC
∧
= [� 7→ xi 0]JR, tKC

where R ∧
= {L1 7→ t1, . . . ,Ln 7→ tn }

JrKL
∧
= Li 7→ ti

{x1 . . .xn } fresh in img(R)

JRKC
∧
= {xi 7→ λy.ti | ti ∈ img(R),y /∈ JtiKfv }

JtKγ

∧
= t if r /∈ t

J[� 7→ r]sKγ

∧
= [� 7→ (fix xr in FR) 0]JsKγ

if JFRKΠ

∧
= JRKC

and JRKG
∧
= R

and R ∧
= J{〈ν :: π · l〉 7→ t }KGn

and JrKL
∧
= 〈ν1 :: π1 · l1〉 7→ t1

J[� 7→ r]sKγ

∧
= otherwise

5.4 Example
Our running example can be encoded in MCL as νroot.D.x.
For this term, the exhaustive lookup yields the result:

R ∧
= {

〈νD :: Eroot ·x〉 7→ JνD,Eroot ,this.A.xKφ ,

〈νA :: ES ·x〉 7→ JνA,ES,up(2).y+up(1).zKφ ,

〈νC :: Eroot ·y〉 7→ JνC,Eroot ,this.B.zKφ ,

〈νD :: Eroot ·z〉 7→ JνD,Eroot ,2Kφ ,

〈νB :: EC ·z〉 7→ JνB,Ec,21Kφ}

After closing this complete result, the translation yields:

(x0 in fix
x0 = y. (x1 0) ;
x1 = y. (x2 0) + (x3 0) ;
x2 = y. (x4 0) ;
x3 = y. 2 ;
x4 = y. 23 ;

) 0

This term then evaluates to 23, as expected.

Session 10B: Modelica Language & Tools

DOI
10.3384/ecp17132703

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

711

5.5 Correctness
The correctness of γ depends on the closure of a term by
a complete lookup result. The most important step is an
observation about a symmetry between the evaluation of a
term containing hierarchical references and that of a fixed
point constructed from the lookup result R of that term:
Both evaluations only differ in the presence or absence of
rule SELECT, which is replaced by specific instances of
FIXAPP (with a group of recursive definitions generated
from R).
Lemma 3 (Correctness of C). The closure of a complete
lookup result is equivalent to the lookup of references.

When R is complete, i.e. JRKG
∧
= R

∧
6= , a term t ap-

pears on the image of R, i.e. 〈ν :: π · l〉 7→ [� 7→ t]s ∈ R,
and t evaluates with n applications of rule SELECT, i.e.
Jν ,π, tKφ ⇓n−SELECT Then the application of R as a fixed
point evaluates to an equivalent result n applications of
rule FIXAPP to R:

[JRKµ◦C]JR, tKC ⇓n−FIXAPP−R JR,vKC

Proof. By natural induction over n. The base step (n =
0) follows by a straightforward induction over ⇓, since
SELECT is not applied in the derivation. The inductive step
also requires a nested induction over ⇓. In the case of t ∧

= r,
the completeness of R is used to apply one step of rule
FIXAPP (and thus the outer induction hypothesis).

The correctness of the overall transformation is defined
as the preservation of the semantics of the transformed
term: When a term evaluates and the transformation yields
no error, then the transformed term yields a value that is
equal to the transformation of the original result.
Theorem 4 (Correctness of γ). The transformation γ pre-
serves the semantics of terms.

t ⇓ v∧ JtKγ

∧
= s =⇒ s ⇓ JvKγ

Proof. By induction over t. The fundamental case is t ∧
= r.

By construction of γ, JrKL
∧
= 〈ν :: π · l〉 7→ Jν ,π,sKφ ∈

R. Inversion of the evaluation yields Jν ,π,sKφ ⇓ v. The
conclusion then follows via rule FIXAPP and Lemma 3.

6 Discussion
We have given a definition of an explicit, context-
independent syntax and semantics for the lookup of names
in Modelica classes. Classes (hierarchical terms) can be
translated by a terminating evaluation of all references.
This translation maintains the original semantics.

6.1 Related Work
The semantics of Modelica has been subject to surprisingly
little research. The work of Kågedal (1998), has a much
broader scope. It does however not discuss open recursion

nor redeclarations and is considerably outdated when it
comes to modern Modelica. Satabin et al. (2015) use a
style comparable to ours, but favor a global environment
(called class table) over our substitution based approach.
Interestingly, they also notice the difficulty to separate the
static semantics of a model from its dynamics, but solve
this problem by restricting their input language. In particu-
lar, no short class definitions or redeclarations are consid-
ered. It is also somewhat unclear if their approach allows
for the late binding of modifications. Despite these differ-
ences, the presented techique may solve the open question
of how to obtain the values for our special variables in the
first place.

6.2 Conclusion
The definition of Modelica’s hierarchical elements by spe-
cial variables allows to express their static semantics. Treat-
ing classes and their interactions like modules with open
recursion allows for a precise reasoning of the outcome of
redeclarations and modifications. Last but not least, the
difficulties that come with the uniform treatment of classes
and components are now obvious and might have an in-
fluence on the design of future versions of Modelica. The
correct translation of hierarchical references in a terminat-
ing process while maintaining the semantics of inheritance,
modifications and redeclarations is a feature that, to our
knowledge, has not been solved before. It allows a clear
separation between the static and dynamic semantics of
names in Modelica.

References
Aldrich, Jonathan and Kevin Donnelly (2004). “Selective

open recursion: Modular reasoning about components
and inheritance”. In: SAVCBS 2004 Specification and
Verification of Component-Based Systems, p. 26.

Höger, Christoph (2016). “Modeling with monads: exten-
sible modeling semantics as syntactic sugar”. In: Pro-
ceedings of the 7th International Workshop on Equation-
Based Object-Oriented Modeling Languages and Tools.
ACM, pp. 15–24.

Kågedal, David (1998). “A Natural Semantics specification
for the equation-based modeling language Modelica”.
In: LiTH-IDA-Ex-98/48, Linköping University, Sweden.

Kahn, Gilles (1987). “Natural semantics”. In: Annual Sym-
posium on Theoretical Aspects of Computer Science.
Springer, pp. 22–39.

Pepper, Peter and Petra Hofstedt (2006). Funktionale Pro-
grammierung – Sprachdesign und Programmiertechnik.
Springer.

Pierce, Benjamin C., ed. (2005). Advanced Topis in Types
and Programming Languages. MIT Press.

Satabin, Lucas et al. (2015). “Towards a formalized Mod-
elica subset”. In: Proceedings of the 11th International
Modelica Conference, Versailles, France, September 21-
23, 2015. 118. Linköping University Electronic Press,
pp. 637–646.

Hierarchical Semantics of Modelica

712 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132703

