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Abstract
To be able to capture the dynamics of entire systems
is one of the strengths of the Modelica language. This
article will examine the possibility of modeling spur
gears in the Modelica environment Wolfram System-
Modeler, and integrating them with other rotating
machinery elements, such as roller bearings and flexi-
ble shafts. The contact forces between spur gears are
based on the Hertzian Theory of Contact1

Keywords: Spur Gear, Hertz Contact Theory, Rotat-
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1 Introduction
Gear contact forces can be accurately modelled by
fem programs, but usually at a high computational
cost. The focus is usually on solving the force equa-
tions statically, where some dynamics might be lost.
A common way of calculating the dynamics is to add
a so called application factor to the static solution,
approximating the dynamic result. By using a Mod-
elica model instead, the dynamics can be included in
the model, replacing the application factor. To be
compatible with other libraries, the models here are
based on the MultiBody library from the Modelica
Standard Library. The choice of using a 3D mechani-
cal library instead of libraries such as PlanarMechan-
ics (Zimmer, 2012), is to be able to keep building on
these models to handle helical and other type of gears.

Another benefit of Modelica models is that they
can be used with other rotating machinery elements.
Let’s say that a wind turbine gear box should be an-
alyzed. This gear box contains inner and outer spur
gears, flexible shafts, and roller bearings. If a Mod-
elica model is used for this purpose, we can see both
how the spur gears affect the bearings, the shafts, as
well as how the shafts and bearings affect the gears.
Therefore, the dynamics of the entire system can be
captured and analyzed.

In Section 2, the gear geometry of a spur gear will
be introduced. Following that, Section 3 will be an
introduction to the Hertzian Contact theory. Section
4 will explain how this was implemented in Modelica.
Section 5 will go through some examples where the
gears were used. Finally a discussion of the results
will follow in Section 6.

1As found in Roark’s Formulas for Stress and Strain, 2002

1.1 Previous work
Several papers have been written regarding model-
ing gears in the Modelica language. Special attention
has been seen in the area of powertrains. One of the
original papers is (Otter et al., 2000) where the Pow-
erTrain package was presented.

The package PowerTrains contains 1-dimensional,
rotational mechanical systems. I.e. a lot of simplifi-
cations have been made to be able to model the com-
plete driveline. At that time it was a state of the art
approach. However, the very idealized components
in that library cannot be used for any advanced di-
mensioning or root cause analysis. The description
of the components are very simplified compared to
the special simulation tools that exist in each specific
machine element area.

During the years, several of the components have
been refined. One work is (van der Linden and
de Souza Silva, 2009) where a 3-dof elastic model
was used which included the elasticity of the support
bearings in the load direction, which was not possi-
ble in the standard gear model. The model was then
extended in (van der Linden, 2012) to also include a
Gear Contact Model. A later paper, (van der Linden,
2015) compared the results from a Modelica model
that investigated gear contact to tests.

A much more detailed approach was taken by
(Kosenko and Gusev, 2011) and further improved in
(Kosenko and Gusev, 2012), where the forces between
gears were modelled with high detail in a Modelica
environment.

2 Gear Geometry
This section describes the geometrical modeling of
two gear wheels that are in contact or in close prox-
imity. Starting with the geometry of a single gear
wheel, we then proceed with the geometry of the in-
teraction between two gear wheels, before going into
more advanced topics such as tip relief and the ge-
ometry involved in triggering events in a Modelica
model.

2.1 Geometry of a gear wheel
A gear is basically a toothed wheel aimed to transmit
rotation from one shaft to another. Spur gears, that is
the focus in this article, can be described as parallel-
axes gears without a helical angle. The gears can be of
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Figure 1. Involute of a circle. The involute (thick line) is
traced by mapping each angle θ to the point p by going the
distance θr along the circle from point a to point b, and then
going the same distance back along the tangent to point p.
Note the right angle at point p. The involute obtained by
this procedure creates an involute corresponding to a rear
flank of a gear tooth. Mirroring the procedure creates a
front flank, drawn with a dotted line.

Table 1. Gear wheel geometry parameters.

Parameter Description
z Number of teeth in gear
m Gear module
α0 = 20◦ Reference profile angle
x Profile shift factor

two types, inner gear (a ring with teeth on the inside)
and outer gear (a wheel with teeth on the outside. For
clarity of presentation, only outer gears are considered
in this section.

One of the main reasons for the broad use of gears
is the efficiency of the transmission, which depends
on shape of the teeth. The most common shape of a
tooth is a circle involute. A circle involute or simply
involute, is a curve following the end point of a tan-
gent that is rolled up from a circle. It is defined by
the geometry in Figure 1. The right angle at point
p, between the tangent of the circle and the tangent
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Figure 2. Gear wheel geometry parameters in an outer
spur gear. The radius of the base circle, rb is easily derived
from the gear wheel parameters z, m, and α0. The effect
of the profile shift, x, is best understood in relation to a
straight gear reference profile, but the derivation is out of
scope in the current presentation.
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Figure 3. Intersection between gear flank and a tangent
of the base circle. Also showing the derived quantity sb,
and the additional parameter ra. Vector k̂ points to the
point on the tooth where the involute begins. The point p
is then obtained from the rolling angle, θ, and rb. The front
flank is where force is transmitted when applying torque in
counter-clockwise direction, and the rear flank when apply-
ing clockwise torque.)

of the circle involute, is a fundamental property of
involute curves.

There are four geometrical parameters that need to
be specified for a spur gear in our case, listed in Ta-
ble 1. These parameters are shown in Figure 2. From
these user-specified parameters, many other quanti-
ties are derived, see Figure 3. For example, one can
derive the tooth base thickness, sb, and also express
a standard choice of ra, as

sb =
(π

2 +2xtanα0 +z invα0
)
mcosα0 (1)

ra =m
(z

2 +x+1
)

(2)

where invα0 = tanα0−α0.
The signed rolling angle, θ, is related to the inner

product of the unit vectors k̂ and t̂,

< k̂, t̂ >= cos
(π

2 −θ
)

(3)

from which it can be solved reliably.

2.2 Line of contact
Contact between two gears always occur for either
front-front flank contact, or rear-rear flank contact.
For each of the two contact cases (front or rear), there
is a line of contact (LoC ), along which the contact
between the teeth will be located. The front and rear
contact cases are analogous, and to avoid going into
details about sign conventions, only the front case
will be considered from here on. Using the wheel
positions, the distance between these points, aw can
be related to the angle of LoC, αw. See Figure 4.

aw = m

2 (z1 +z2) cosα0
cosαw

(4)

Here, the indices 1 and 2 mean gear wheel 1 and
gear wheel 2 respectively. The LoC normal (in two
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Figure 4. Line of contact of two gears, for contact between
front flanks on the teeth (transmitting force when either
gear is driving with positive direction of rotation). The LoC
for contact between rear flanks is obtained by reflection in
the line through the gear centers.

dimensions), n̂, can then be expressed using the angle
αw, as

cosαw = (rb1 + rb2)
||aw| |

(5)

sinαw =±
√

1− cosα2
w (6)

n̂=
(

cosαw sinαw
−sinαw cosαw

)
aw
||aw| |

(7)

where the sign of sinαw reflects the choice between
LoC for clockwise or counter-clockwise rotation.

A point p on the flank of a tooth can now be de-
scribed using αw, the LoC, rb, and the center position
of the gears, ci.

In order to determine contact forces between two
gear flanks, we define an indentation depth, δ measur-
ing the amount of intersection between the teeth. The
depth is modeled using the points p1 and p2, where
the gear flanks intersect with the LoC.

2.3 Tip relief
To get a smooth contact force, a modification of the
tip is usually done, called a tip relief. This can be
done by removing a small portion of the tooth, as
shown in Figure 5. The LoC will be affected by this
modification, but the change is on the scale of 0.01

c

rb
θ

ra d
v(θ) c

0

Figure 5. Gear with tip relief (exaggerated).

modules, which makes the effect on the LoC negligi-
ble. The new tooth shape with tip relief can then be
calculated by the following standard equation:

v(θ) = q(θ−θa) (8)

where q is a coefficient to ensure that the amplitude
is obtained correctly, and θa is the maximum value
for the roll angle. How much of the tooth that is
removed can be specified by setting the distances c
and d, defining the tip relief amplitude and tip relief
length, respectively.

2.4 Tooth pair activation
A pair of teeth in contact are identified by one integer
index on each gear, i1 and i2. Together with the rota-
tions of the axes on which the gears are mounted, ϕ1
and ϕ2, the directions k1 and k2 pointing at the start-
ing points of the involutes on the base circles follow,
which in case of front flank contact are given by

k̂1 =
(

cosβ1

sinβ1

)
β1 =

sb,1
2rb,1

+ i1
2π
z1

+ϕ1 (9)

k̂2 =
(

cosβ2

sinβ2

)
β2 =

sb,2
2rb,2

+ i2
2π
z2

+ϕ1 (10)

As was shown in Figure 3, the rolling angles follow for
any given direction of the LoC. In Figure 6, the front
flanks corresponding to indices i1 and i2 are marked
with a thick line. As the gears rotate, the current
tooth pair will become disengaged, while other pairs
will become engaged. An index skip, i∆, is chosen by
upward rounding of the gear contact ratio. Depend-
ing on the direction of rotation, the next tooth pair to
follow when the current pair has become disengaged
is selected as

i′1 = i1± i∆ (11)
i′2 = i2∓ i∆ (12)

rb,1
ra,1

k̂1

θ1
θa,1

ε+ i 1

i 1
+2

i1−2

rb,2

ra,2
k̂2

θ2

θa,2

ε−

i 2

i2
+2i2−

2

Figure 6. Slack variables used to control tooth pair acti-
vation for front flank contact. Here, i∆ = 2, corresponding
to a configuration for a contact ratio between 1 and 2.
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In Figure 6 where gear 1 rotates clockwise, the
change in i1 is with positive sign, while the change in
i2 is with negative sign. The slack angle ε+ measures
how much the rolling angle θ1 may decrease until it
is absolutely necessary to consider interaction for the
tooth pair i′1 and i′2. Analogously, when gear 2 rotates
clockwise, ε− measures how much the rolling angle θ2
may decrease until it is absolutely necessary to con-
sider interaction for the tooth pair in the opposite
direction. The slack angles are given by

ε+ = θ1 + i∆
2π
z1
−θa,1 (13)

ε− = θ2 + i∆
2π
z2
−θa,2 (14)

In the Modelica model presented in Section 4, the
tooth indices are updated such that the slack angles
are positive at all times. For robust simulation, it is
desirable to update indices with some margin until
it is absolutely necessary according to the slack vari-
ables. That is, we should avoid triggering the update
at the lower bound 0. When indices are updated be-
cause one of the slacks is getting too close to zero, that
slack variable will be reset to a large value, while the
other slack variable will be signifiantly reduced. We
will trigger based on the following conditions, where
γ is a positive constant which remains to be deter-
mined,

ε+ < γ

(
ε−− i∆

2π
z2

)
Trigger positive change in i1

(15)

ε− < γ

(
ε+− i∆

2π
z1

)
Trigger negative change in i1

(16)

In order to avoid endless event iteration when up-
dating the indices, it must be ensured that trigger-
ing a change in one direction does not reduce the
other slack so much that it satisfies the condition
for re-triggering a change in the opposite direction.
By equating the margin to the lower bound of zero
slack, with the margin to re-triggering a change in
the opposite direction, a natural choice of γ =

√
5−1
2

is obtained.

3 Hertz Contact Stress
To calculate the force between two gear teeth,
Hertzian Contact Theory has been used. At the point
of contact, the two teeth are approximated by two
cylinders with parallel axes, see Figure 7.

The indentation depth, δ, is related to the contact
force by

δ =
2F (1−ν2)(2

3 +log(4R1
b )+ log(4R2

b ))
πLEmod

(17)

Figure 7. Contact between two cylinders with variables.

where F is the force, ν is the Poisson ratio, Emod is
Young’s modulus, L is the length of the cylinder, Ri

are the radii of the cylinders, and b is the contact
width2. The contact width is modeled by

b=
√

32F
πLEred( 1

R1
+ 1

R2
)

(18)

Here, Ered is a combination of the two gear wheels’
material parameters

1
Ered

= 1
2

( 1−ν2
1

Emod1
+ 1−ν2

2
Emod2

)
(19)

From (17) and (18), the force can be calculated as a
function of the indentation depth. The geometry of
the cylinders in contact will change when moving on
the LoC. This means that the curvature radii R1 and
R2 will be changing so that one of them will start
with a small radius and increase when moving along
the LoC, and the other will start with a big radius
and decrease when moving along the LoC.

The conditions for applying a force at the appropri-
ate time is to check if the distance between the wheel
center ci and the point pi is less than the top radius of
the gear ra,i. Additionally, we also check if δ is larger
than zero, i.e.

|c1−p1|< ra,1 (20)
|c2−p2|< ra,2 (21)

δ > 0 (22)

The effects of gear damping has not been included
in this model.

2As found in Roark’s Formulas for Stress and Strain, 2002,
Table 14.1.2
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4 Modelica Model
The implementation of the spur gear model in Mod-
elica is using the Modelica MultiBody library. This
means that there will be 3D animations for all mod-
els. For example, the contact force is visualized by
arrows between two teeth, as seen in Figure 8.

The topology of the model consists of a top layer
diagram where the layout is specified, i.e. how the
gear wheels are positioned and if a force should be
calculated between them. Figure 9 shows the Model-
ica diagram layer of a simple two wheel model with
contact between them.

The force between the two gear wheels is calcu-
lated inside the gearForceCalculation component.
The system of non-linear equations (17) and (18)
has multiple solutions, and the correct one is not

Figure 8. Two outer spur gears in contact, with arrows
representing the contact forces acting on the gears. At this
moment, two teeth pairs are in contact.

Figure 9. Model of two gear wheels in contact.

Figure 10. Model of the component where gear forces are
calculated, containing four ContactForcePoints.

differentiable at δ = 0. To handle this, the solu-
tion is approximated by a closed-form expression.
The gearForceCalculation class contains at least
four ContactForcePoint components, as seen in Fig-
ure 10. Each of these ContactForcePoints is respon-
sible for calculating one force pair on one matching
teeth pair. Since the gear ratio should be above one,
but less than two in the case of two outer spur gears,
two force pairs are needed. Two more force pairs
(ContactForcePoint components) are needed due to
the two flanks on each tooth. If a gear ratio over 2
is possible, as in the case of a planetary gear between
the ring and a planet, more ContactForcePoints can
be added to handle this.

The contact ratio will be calculated automati-
cally, depending on the geometry of the two gear
wheels in contact. This is used to assert that the
GearForceCalculation component is set up cor-
rectly.

Many parameters can be set by set user on the
GearForceCalculation component that will affect
the ContactForcePoints inside. The parameters are
listed in Table 2.

Table 2. GearForceCalculation parameters.

Parameter Description
m Gear module
L Contact width of wheels
zi Number of teeth in gear wheel i
xi Profile shift factor for gear wheel i
νi Poisson’s ratio for wheel i
Emodi

Young’s Modulus wheel i
ci Tip relief amplitude for wheel i
di Tip relief length for wheel i
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5 Example Models
Figure 9 showed a simple example with two outer
gears in contact, and no other components in the sys-
tem. This can easily be expanded.

5.1 Effect of tip relief
Using the presented gear model, it is possible to com-
pute dynamic effects in gears such as the variation in
contact stresses. Figure 11 shows the contact stress
for one tooth during a contact. In this case the gear
wheel support is fixed in all translational directions,
which means that there are no external vibrations af-
fecting the result.

The contact starts with a transient, stabilizing to a
lower force level, where two pairs of teeth in contact.
Then the other pair of teeth goes out of contact and
only the current tooth takes all force. After a while, a
new teeth pair will go into contact, and the force level
will drop again. Finally the current teeth pair goes
out of contact, and the force drops to zero. The rea-
son for the transient is that all pair of teeth in contact
will have the same indentation depth, δ. Hence, when
a new pair of teeth goes into contact, the initial in-
dentation depth at the tip of the incoming tooth will
be that of the one pair of teeth currently in contact.
The gears will then quickly adjust to the same total
torque of two pairs of teeth. To avoid the transient,
the tip of the involute shape is modified with a tip
relief, as was shown in Figure 5.

Figure 12 shows the much smoother contact pres-
sure with tip relief.

5.2 Wind turbine gear box
A planetary gear box can be created by combining
inner and outer spur gears with flexible shafts. A
two-stage gear box is then connected to the planetary
gear box. A screenshot of the animation is shown in
Figure 13 and the model diagram is shown in Fig-
ure 14. This setup is capable of changing the angular
velocity from the slow rotation of the blades, around

Figure 11. Contact pressure between two teeth without
tip relief.

Figure 12. Contact pressure between two teeth with tip
relief.

Figure 13. Animation of the wind turbine gear box model.

10 rpm, to the fast rotation of the generator, around
1500 rpm.

The contact forces are calculated at many differ-
ent points in this system. In the planetary gear
there are forces between the center gear wheel (the
sun) and the three outer wheels (the planets), and
also between the three planets and the inner gear
wheel (the ring). With a possible contact ratio above
2, the GearForceCalculation components between
inner and outer gears (planet and ring) contain 6

Figure 14. A wind turbine gear box.
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ContactForcePoints. In total, the system contains
38 ContactForcePoint components, making it pos-
sible to simulate this system with gear forces at all
points and all rotational directions. The gear can
be driven by any wheel, both clockwise and counter-
clockwise. In addition to this, the wheels are con-
nected to flexible shafts that are fixed in a support.

In this setup, one could detect if there are any peaks
in forces between the gears, or if the flexible shafts
affect the gear in any significant way if the material
parameters for the beams changes. An example of
contact pressures in a steady state of the gear box
can be seen in Figure 17 on page 9.

5.3 Gear and bearings
Since rotating machinery elements affect each other
in various ways, it is important to be able to study
different elements together. An example of such and
interaction is when a system containing rotating flex-
ible shafts with bearings, that sets the gear wheels
in motion. The bearings contain cylindrical rollers,
which have Hertzian contact forces between the inner
and outer ring of the bearing. A 3D visualization of
the setup is shown in Figure 15.

Two flexible shafts are supported by roller bear-
ings. The bearings on the lower shaft are mounted on
flexible supports, that are fixed to the ground. The
lower shaft rotates at 600 rpm. One of the bearings
has an outer ring defect (top right bearing in figure
15). The visualization of the outer ring in this bearing
has been removed to give a better view of the rollers
inside the outer wheel. This defect will in this case

Figure 15. Two shafts with bearings, connected by spur
gears.

Figure 16. Acceleration in the vertical direction, with a
red highlighting at impact points, as predicted by the shock
pulse method.

cause an extra downward force to be applied at the
"12 o’clock" position when a roller passes this point.

Vibration analysis of a damaged bearing is usually
a quite complicated task. A frequency spectrum will
normally not show a small bearing defect. Instead
different kinds of shock pulse methods have been de-
veloped. The signals are normally at rather high fre-
quencies. In this example the time of impact has been
marked with red lines. As can be seen in figure 16, the
accelerations and impacts align at most points. This
analysis can also be done to investigate a damaged
gear.

The benefit of being able to do this simulation anal-
ysis is huge. Understanding where and how large a
damage is gives a better picture of what and when an
overhaul should be done, often saving a lot of money
as well as improving the overhaul. A typical example
of where this is vital is in paper machines where a
carefully planned overhaul may save millions of dol-
lars. Another example is in cruise ship machines,
where a dry-dock needs to be available for an over-
haul and passengers might need to rebook their trip
to other ships, depending on overhaul time.
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6 Conclusions
With this implementation of a gear model, a high ac-
curacy causal model of contact forces can be put in a
multi-domain simulation environment. This can then
be used to find weak points in complex rotating ma-
chinery systems. Key points are summarized below.

• The physical accuracy is at the level where fac-
tors like shaft position, clearances, tip relief, mis-
alignment and vibrations by default are taken
into account. Essentially, this approach com-
bines the simplicity of drag-and-drop, and multi-
domain modeling in Modelica, as in (van der Lin-
den, 2012), with high accuracy calculations of
gears, as in (Kosenko and Gusev, 2012).

• The drag-and-drop capability of Modelica and
Wolfram SystemModeler, makes the creation of
a custom model very easy. All effort required
from a user is to parametrize the models.

• The formulation of the gear contact shown in
this paper is designed to be simple to expand
into more complex contacts. In other words it
is easy to take deviations from the ideal involute
gear into account. Tip relief was used here as
an example. Another effect of this is that the
gear formulation can also easily be expanded to
helical gears, bevel gears and worm gears. Effects
such as contact roughness, and manufacturing
errors can also be included in the future.

• Domain specific software, such as gear or bearing
design software, gives very accurate results for a
specific machine element, but are limited when
an extension outside the domain is needed. The
examples presented in this paper shows how ef-
ficient several different machine elements can be
combined, as well as coupling to other domains.
For instance, the applied torque in the models
was obtained using a pid controller.

• The wind turbine example showed how impor-
tant tip relief is for avoiding excessive wear. Us-
ing a software not able to include tip relief may
lead to a bad geometrical design and high costs
in the correction process. This is particularly
true if the wear is detected after some time in
operation.

• What is missing and can be included in future
work, is testing and verification of the modeling
results as done in (van der Linden, 2015), as well
as a speed up of the simulation time. Today, the
simulation time is around real-time for simple
models (2 spur gears in contact, both connected
on flexible shafts), and slower for more complex
models, depending on speed of rotation. Tooth

bending has been neglected in this model and
should be included in the future
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Figure 17. Contact pressure on teeth at three places in the wind turbine gear box. The first plot is showing the
pressure of one planetary wheel to the ring. The second plot shows the pressure between teeth in the first step in the
two-step gear box. Finally the third plot shows the pressure between teeth in the last step of the gear box. One can
easily see how the frequency changes from the planetary gear to the last step before the generator.
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