
Traceability Support in OpenModelica using Open Services for

Lifecycle Collaboration (OSLC)

Alachew Mengist Adrian Pop Adeel Asghar

 Peter Fritzson

 PELAB – Programming Environment Lab, Department of Computer Science, Linköping University, Sweden,
{alachew.mengist, adrian.pop, adeel.asghar, peter.fritzson}@liu.se

Abstract

A common situation in industry is that a system model

is composed of several sub-models which may have

been developed using different tools. The quality and

effectiveness of large scale system modeling heavily

depends on the underlying tools used for different

phases of the development lifecycle. Available

modeling and simulation tools support different

operations on models, such as model creation, model

simulation, FMU export, model checking, and code

generation. Seamless tracing of the requirements and

associating them with the models and the simulation

results in the context of different modeling tools is

becoming increasingly important. This can be used to

support several activities such as impact analysis,

component reuse, verification, and validation.

However, due to the lack of interoperability between

tools it is often difficult to use such tools in

combination. Recently, the OSLC specification has

emerged for integrating different lifecycle tools using

linked data. In this paper we present new work on

traceability support in OpenModelica where the

traceability information is exchanged with other

lifecycle tools through a standardized interface and

format using OSLC. In particular, OpenModelica

supports automatic recording and tracing of modeling

activities such as creation, modification, and

destruction of models, import model description XML,

export of FMUs, and creation of simulation results.

Keywords: OpenModelica, traceability, OSLC, tool
interoperability, tool integration, model management,

Modelica

1 Introduction

Modeling and simulation tools have become

increasingly used for industrial applications. Such tools

support different activities in the modeling and

simulation lifecycle, like specifying requirements,

model creation, model simulation, Functional Mock-up

Unit (FMU) export (Blochwitz et al, 2011; FMI-

Standard.org, 2014), model checking, and code
generation. However, the heterogeneity and complexity

of modern industrial products often require special

purpose modeling and simulation tools for different

phases of the development life cycle. Seamless

exchange of models between different modeling tools

is needed in order to integrate all the parts of a

complex product model throughout the development

life cycle.

During the past decade, the Open Services for

Lifecycle Collaboration (OSLC) specifications (Open-

services.net, 2008) have emerged for integrating

development lifecycle tools using Linked Data (Heath

and Bizer, 2011). For traceability purposes, in

particular the OSLC Change Management specification

is relevant. In earlier work (Elaasar and Neal, 2013)

OSLC has successfully been demonstrated for

integration of modeling tools in general, and

traceability in particular.

OpenModelica (Fritzson et al, 2006) is an open

source modeling, simulation, and optimization tool for

Modelica (Modelica Association, 2012; Fritzson, 2014)

language. The OpenModelica Connection Editor

OMEdit (Asghar et al, 2010) is a graphical Modelica

model editing and simulation tool. It supports model

creation, deletion, FMU export/import, textual and

graphical model editing including connections

drawing, simulation, plotting, and documentation

presentation. In the previous version of OpenModelica

(Pop et al, 2014) the compiler supports traceability in

terms of tracing generated C code back to the

originating Modelica source code, but not in the OSLC

sense, and mostly used for debugging.

In this paper we present new traceability support in

OpenModelica where the traceability information is

exchanged with other lifecycle tools through a

standardized interface and format using OSLC. In

particular, OpenModelica supports automatic recording

and tracing of modeling activities such as creation,

modification, and destruction of models, import of

model description XML, export of FMUs, and creation

of simulation results to link models from various tools.
OpenModelica supports simple queries (traces to and

traces from) to present the traceability information to

the user.

The rest of this paper is structured as follows: In

Section 2 an overview of OSLC is given. The
traceability design and architecture is presented in

Section 3. An Example of integrated tools to trace

DOI
10.3384/ecp17132823

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

823

artifacts created during the system development

process is presented in Section 4. Section 5 describes

the traceability and model management workflow in

OpenModelica. The prototype implementation is

described in Section 6. Conclusions and future work

are presented in Section 7.

2 Open Services for Lifecycle

Collaboration (OSLC)

Open Services for Lifecycle Collaboration (OSLC)

(Open-services.net, 2008) is an open source initiative

for creating a set of specifications that enables

integration of development life cycle tools (e.g.,

modeling tools, change management tools,

requirements management tools, quality management

tools, configuration management tools). The goal of

OSLC is to make it easier for tools to work together by

specifying a minimum amount of protocol without

standardizing the behavior of a specific tool.

The OSLC specifications use the Linked Data model

to enable integration at the data level via links between

tool artifacts defined as Resource Description

Framework (RDF) (Manola and Miller, 2004)

resources (beside other possible representations such as

XML, JavaScript Object Notation (JSON) (json.org,

2016), Atom, and Turtle). The resources are identified

by HTTP URIs. A common protocol to perform

creation (HTTP POST) and retrieval (HTTP GET),

update (HTTP PUT) and delete (HTTP DELETE)

operations on resources is also specified.

3 Traceability Design and

Architecture

The traceability design and architecture is mainly being

developed in the INTO-CPS project (into-cps.au.dk,

2015) which contains a set of tasks. One of these is the

design of traceability and model management with the

following goals (Lausdahl et al, 2016):

 Checking the realization of requirements in models

 Enabling collaborative work by connecting

artifacts and knowledge from different users

 Decreasing redundancy by connecting different

tools to a single requirements source and allowing

a system-wide view that is not only limited to

single tools

The Provenance (PROV) (Moreau et al, 2013) and

OSLC standards presented in (Fitzgerald et al, 2015)

are used to support traceability activities. PROV is a

set of documents built on the notation and relation of

entities, activities, and agents.

The design and architecture of the traceability-

related tools has recently been developed in (Lausdahl

et al, 2016) and is shown in Figure 1. Any modeling

tool written in any programming language can use

these traceability standards to support the traceability

of activities performed within the tool and interact with

other tools.

Figure 1. Schematic architecture of the traceability-

related tools.

As depicted in Figure 1, the architecture is divided

into three parts:

 Modeling Tools – The modeling tools send

traceability information from activities that are

performed within the tools (e.g., model creation,

modification, import model description in XML) to

the daemon.

 Daemon – The daemon provides an OSLC

interface compliant with RESTful (Richardson and

Ruby, 2007) to store the traceability information

into the database and retrieve the traceability data

from the database. It is launched and terminated by

modeling tools.

 Neo4j Graph Database – The Neo4j database

(Neo Technology, Inc, 2007) is a graph database to

store the OSLC triples that make up the traceability

data.

4 An Example of Integrated Tools for

Cyber-Physical Model Development

OpenModelica has been successfully integrated with

the INTO-CPS tool chain to trace artifacts created

during the system development process from high level

requirements to simulation results. The tools involved

are Overture (Larsen et al, 2010), 20-sim (Controllab

Products B.V, 2013), Modelio (Favre, 2005) and RT-

Tester (Verified Systems International GmbH, 2012).

The tool chain as shown in Figure 2 is defined by the

connections between the system architecture and the

simulation via the model description XML file and the

FMU.

The SysML Connection diagram defines the

components of the system and their connections. The

internals of these block instances are created in the

various modeling tools and exported as FMUs. The

modeling tools support importing the interface

definition (ports) of the blocks in the Connection

diagram by importing a modelDescription.xml file

containing the block name and its interface definition

linked with requirements. All tools are storing
information in Git and sending information about

existing and created artifacts to the global database.

Traceability Support in OpenModelica Using Open Services for Lifecycle Collaboration (OSLC)

824 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132823

5 Traceability and Model

Management in OpenModelica

In the new work reported in this paper, OpenModelica

has been extended with support of traceability in the

OSLC sense, where traceability information is

exchanged with external tools through a standardized

interface and format. The implementation is based on

an architecture and a common interface defined in

(Lausdahl et al, 2016) for exchanging traceability

information.

The modeling activities that can be recorded

automatically and traced within OpenModelica are:

 Model description XML import (linked with

requirements)

 Model creation

 Model modification

 Model destruction

 FMU export

 Simulation result creation

The complete workflow for traceability artefacts within

OpenModelica and the different components that rely

on are shown in Figure 3.

The following summarizes the main workflow that

could be used to create and record traceability

information in OpenModelica during cyber-physical

model development process.

1. Commit model file entity to Git repository and

record the Git-hash

2. Create URIs of the activity based on the Git-hash

3. OSLC triples describing the activity are generated

using the URIs

4. OSLC triples are sent to the traceability Daemon

5. Retrieve the traceability information (traces to and

traces from)

The traceability information is represented in JSON

format. The modeling activities described by OSLC

triples represented in JSON format are sent from

OpenModelica to the daemon. These traces are then

sent through the daemon to the Neo4j database, where

they are stored. In order to view and analyze

traceability data, this is later retrieved (traces to and

traces from) from OpenModelica, through the

appropriate queries from the daemon to the database.

Figure 2. An Example of integrated tools to trace artifacts created during the system development process (Bandur et al

, 2016).

Session 11A: Modelica Tools & GUIs

DOI
10.3384/ecp17132823

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

825

6 Prototype Implementation

We have implemented a prototype to demonstrate the

idea of exchanging traceability information for

integrating lifecycle modeling tools using OSLC. The

prototype is implemented based upon the design and

architecture presented in Section 3.

As mentioned, the implementation of this prototype

is an extension of OMEdit (Asghar et al, 2010) which

is implemented in C++ using the Qt Framework (Nokia

Corporation, 2011) graphical user interface library. For

presentation reasons, we have grouped the prototype

functionality into three categories: importing model

description XML, model management with Git

integration, and traceability support using OSLC,

which are described in the following subsections.

6.1 Import Model Description in XML

As a preparation for the extension to support tracing

for importing modelDescription.xml interface files, we

extended OpenModelica to support importing

modelDescription.xml (See Figure 4).

Figure 4. A screen shot of the model description XML

import operation.

OpenModelica can import model description XML

interface files (linked with requirements) created using

other system architectural modeling tools and create

Figure 3. Workflow of traceability of artifacts during the system development process in OpenModelica.

Traceability Support in OpenModelica Using Open Services for Lifecycle Collaboration (OSLC)

826 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132823

Modelica models from this information. The result is a

generated file with a Modelica model stub containing

the inputs and outputs specified in the model

Description.xml file. Then the user can create a

complete model using the GUI via drag and drop in the

editor. Hence, the traceability chain within

OpenModelica traces models linked with requirements

through model description xml import, model creation,

model modification, FMU export and simulation

results.

6.2 Model Management with Git Integration

One of the objectives of the traceability tooling is to

manage the development process in terms of modeling

activities within the modeling tools. In order to achieve

this objective access to the version control system is

required in OpenModelica. Therefore the

OpenModelica Connection Editor OMEdit has been

enhanced to support Git version control as shown in

Figure 5.

The OMEdit Git integration is currently in an early

stage of development but already supports some basic

functionality (See Figure 5) such as staging modified

tracing operations on files for commit, committing, and

reverting changes. It is useful to provide viewing of

status and version history which can be used for

creating the resource URIs for the modeling activities

on each new commit.

The implemented prototype also allows to create a

local Git repository by selecting Git -> Create New

Repository from the menu bar. Since the URI, as

presented in (Fitzgerald et al, 2015) is the combination

of the Git-hash and the unique path for every file in the

project, creating a Git repository for traceability

purposes automatically adds a structure (See the left

part of Figure 5) for models, simulation results, FMUs,

and model description XML files to the Git repository.

6.3 Traceability Support in OpenModelica

The traceability support in OpenModelica provides a

graphical user interface to interact with other lifecycle

modeling tools.

As already mentioned in Section 4, OpenModelica

supports traceability in the OSLC sense, where

traceability information is exchanged with external

tools through a standardized interface and format. The

implementation is based on the architecture and a

common interface defined in (Lausdahl et al, 2016) for

exchanging traceability information.

OpenModelica imports the modelDescription.xml

and creates a Modelica model according to the FMU

interface. The generated Modelica model is completed

with behavior for the SysML block and the final model

is exported in the FMU form. The generated FMU is

then used in a whole system simulation connected

according to the SysML connection diagram. The

Figure 5. GUI of Git Integration in OpenModelica and functions available to create traceability URI.

Session 11A: Modelica Tools & GUIs

DOI
10.3384/ecp17132823

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

827

FMU master simulation algorithm component performs

the simulation via the INTO-CPS App. This whole

chain is traced using OSLC.

We have designed a graphical user interface shown

in Figure 6 which allows the user to record the

traceability information and send to the Daemon

(OSLC triples in JSON format), describing the activity

using the URIs generated in the GUI shown in Figure

5. The PROV and OSLC relations that are mainly used

in this work can be found in (Fitzgerald et al, 2015).

Figure 6. GUI to send traceability information to daemon.

These traces are then sent through the daemon to the

database via HTTP POST http://localhost:8080/

traces/push/json, where they are stored. Figure 7 shows

an example of traceability information sent from

OpenModelica to the daemon and visualized in the

Neo4j database.

Entities (e.g. Modelica files, FMUs,

modelDescription XML file) are shown in green,

actions (e.g. model creation, FMU export,

modelDescription XML import) are shown in yellow,

agents (e.g. users with the names "Alachew",
“Adrian”, “Peter”, and “Adeel”) are shown in blue,

and their relationships “what come from what” and

“what used what” (e.g. “wasGeneratedBy”,

“wasDerivedFrom”, “usedTool”) are shown with red

arrows.

In order to view and analyze traceability data, we

have also designed a graphical user interface shown in

Figure 8 which allows the user to query traceability

information (traces to and traces from) from the

daemon to the database (via HTTP GET):

 http://localhost:8080/traces/from/<URI>/json and

 http://localhost:8080/traces/to/<URI>/json

Figure 7. An example of traceability information sent from OpenModelica to the daemon and visualized in the Neo4j

database.

Traceability Support in OpenModelica Using Open Services for Lifecycle Collaboration (OSLC)

828 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132823

Figure 8. GUI to query traceability information (traces to

and traces from) from Neo4j database.

7 Conclusions and Future Work

This paper has presented a framework for traceability

and model management in OpenModelica, and its

integration with the Git version control system.

The new version of OpenModelica supports

traceability in the OSLC sense, where traceability

information is exchanged with external tools through a

standardized interface and format. The Modeling

activities that can be recorded automatically within

OpenModelica and traced are import of model

description XML linked with requirements, creation of

models, modification of models, destruction of Models,

export of FMUs, and creation of simulation results.

A first prototype to query traceability information

(traces to and traces from models or simulation results)

from the database and display to end-users in JSON

format is also complete. As future work, we also intend

to extend the OpenModelica tool to support

visualization and presentation of the traceability data

viewed both in the form of graphs and trees.

The OpenModelica model management with Git

integration is currently in an early stage of

development but is already being able to support end-

users to trace back all steps of the modeling process

and to revert each step in the development history, and

also model collaboration between end-users. Ongoing

work is focused on having fully functional Git

integration including showing two versions of the same

model in parallel.

Future work also involves computing the impact of

two different versions of the same model on simulation

results and merging the models in way that the

resulting model can be valid without modification.

Acknowledgments

This work has been supported by the European Union

in the H2020 INTO-CPS project. Support from

Vinnova in the ITEA3 OPENCPS project has been

received. The OpenModelica development is supported

by the Open Source Modelica Consortium. Special

thanks to Kenneth Lausdahl, Peter Niermann, Jos Höll,

Carl Gamble, Oliver Möller, Etienne Brosse, Tom

Bokhove, and Luis Diogo Couto for collaboration and

valuable input to traceability related tools design.

References

Adeel Asghar, Sonia Tariq, Mohsen Torabzadeh-Tari, Peter

Fritzson, Adrian Pop, Martin Sjölund, Parham Vasaiely,

and Wladimir Schamai. An Open Source Modelica

Graphic Editor Integrated with Electronic Notebooks and

Interactive Simulation. In Proc. of the 8th International

Modelica Conference 2011, pp. 739–747. Modelica

Association, March 2011.Linköping University, Sweden,

2010.

Victor Bandur, Peter Gorm Larsen, Kenneth Lausdahl,

Casper Thule, Anders Franz Terkelsen, Carl Gamble,

Adrian Pop, Etienne Brosse, Jrg Brauer, Florian Lapschies,

Marcel Groothuis, Christian Kleijn, and Luis Diogo Couto.

INTO-CPS Tool Chain User Manual. Technical report,

INTO-CPS Deliverable, D4.2a, December 2016.

Torsten Blochwitz et al. The Functional Mockup Interface

for Tool independent Exchange of Simulation Models. In

Proceedings of the 8th International Modelica Conference,

Dresden, Mar. 2011. doi: 10.3384/ecp11063105.

Controllab Products B.V. Modelling and simulation software

package for mechatronic systems http://www.20sim.com/,

January 2013.

Maged Elaasar and Adam Neal. Integrating Modeling Tools

in the Development Lifecycle with OSLC: A Case Study,

pages 154-169. Springer Berlin Heidelberg, Berlin,

Heidelberg, 2013.

Jean-Marie Favre. Foundations of Model (Driven) (Reverse)

Engineering: Models – Episode I: Stories of The Fidus

Papyrus and of The Solarus. In Language Engineering for

Model-Driven Software Development, March 2005.

John Fitzgerald, Carl Gamble, Richard Payne, and Ken

Pierce.Methods Progress Report 1. Technical report,

INTO-CPS Deliverable, D3.1b, December 2015.

FMI-Standard.org (2014). Functional Mock-up Interface for

ModelExchange and Co-Simulation Version 2.0.

https://www.fmi-standard.org/ (accessed: 10th of

December 2016).

Peter Fritzson. Principles of Object Oriented Modeling and

Simulation with Modelica 3.3: A Cyber-Physical

Approach. 1250 pages. ISBN 9781-118-859124, Wiley

IEEE Press, 2014.

Peter Fritzson, Peter Aronsson, Adrian Pop, Hakan Lundvall,

Kaj Nyström, Levon Saldamli, David Broman, Anders

Sandholm. OpenModelica – A Free Open-Source

Environment for System Modeling, Simulation, and

Teaching. Proceedings of the 2006 IEEE Conference on

Computer Aided Control System Design, Munich,

Germany, October 4–6, 2006.

Tom Heath and Christian Bizer (2011) Linked Data:

Evolving the Web into a Global Data Space (1st edition).

Synthesis Lectures on the Semantic Web: Theory and

Technology, 1:1, 1-136. Morgan & Claypool, 2011. doi:

10.2200/S00334ED1V01Y201102WBE001.

Session 11A: Modelica Tools & GUIs

DOI
10.3384/ecp17132823

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

829

into-cps.au.dk (2015). Integrated Tool Chain for Model-

based Design of Cyber-Physical Systems. http://into-

cps.au.dk/ (accessed: 10th of December 2016).

json.org. JavaScript Object Notation. http://www.json.org/

(accessed: 10th of December 2016).

Peter Gorm Larsen, Nick Battle, Miguel Ferreira, John

Fitzgerald, Kenneth Lausdahl, and Marcel Verhoef. The

Overture Initiative – Integrating Tools for VDM.

SIGSOFT Softw. Eng. Notes, 35(1):1–6, January 2010.

Kenneth Lausdahl, Peter Niermann , Jos Höll , Carl Gamble

,Oliver Möller , Etienne Brosse , Tom Bokhove , Luis

Diogo Couto , Adrian Pop , and Christian König. INTO-

CPS Traceability Design. Technical report, INTO-CPS

Deliverable, D4.2d, December 2016.

Frank Manola and Eric Miller, editors (2004). RDF Primer.

W3C Recommendation. World Wide Web Consortium.

https://www.w3.org/TR/2004/REC-rdf-primer-20040210/

(accessed: 10th of December 2016).

Modelica Association (2012). Modelica: A Unified Object

Oriented Language for Physical Systems Modeling,

Language Specification version 3.3. https://modelica.org/

(accessed: 10th of December 2016).

Luc Moreau, Paolo Missier, James Cheney and Stian

Soiland-Reyes, editors and contributors (2013): An

Overview of the PROV Family of Documents.

https://www.w3.org/TR/prov-n/ (accessed: 10th of

December 2016).

Neo Technology, Inc (2007). Neo4j Database.

https://neo4j.com/ (accessed: 10th of December 2016).

Nokia Corporation (2011). Qt Project. https://www.qt.io/

(accessed: 10th of December 2016).

Open-services.net (2008): Open Services for Lifecycle

Collaboration – Lifecycle Integration Inspired by the Web.

http://open-services.net/ (accessed: 10th of December

2016).

Adrian Pop, Martin Sjölund, Adeel Ashgar, Peter Fritzson,

and Francesco Casella. Integrated Debugging of Modelica

Models. Modeling, Identification and Control,

35(2):93{107, 2014.

Leonard Richardson and Sam Ruby. RESTful Web Services

(First ed.), O'Reilly, 2007.

Verified Systems International GmbH, Bremen, Germany.

RTTester Model-Based Test Case and Test Data Generator

– RTTMBT: User Manual, 2015. https://www.verified.de/

products/model-based-testing/, Doc. Id. Verified-INT-

003-2012.

Traceability Support in OpenModelica Using Open Services for Lifecycle Collaboration (OSLC)

830 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132823

