
Interactive FMU-based Visualization for an Early Design
Experience

Volker Waurich1 Jürgen Weber2

1Chair of Construction Machines, TU Dresden, Germany, volker.waurich@tu-dresden.de
2Chair of Fluid-Mechatronic Systems, TU Dresden, Germany, weber@ifd.tu-dresden.de

Abstract
User experience is an eminent part of holistic product de-
sign. Especially in the field of mobile machinery, the
driver’s impression of the machine handling is crucial for
successful design. To get an early understanding of the
ergonomic aspects of a new concept of operation, func-
tional prototypes can be applied. This paper presents the
tools to develop a functional prototype using free software
and low-cost hardware. This includes prototyping of con-
trol devices, interfaces to the Modelica-based simulation
models and a generic visualization using a game engine.
In order to speed up the process of functional prototyping,
an approach to automatically visualizing FMUs based on
a scene description file is presented. The application of in-
teractive simulation was used to support the development
of a novel control device for excavators in a student project
at TU Dresden.
Keywords: visualization, OpenModelica, engineering ed-
ucation, construction machines, rapid prototyping

1 Introduction
The operation of mobile machinery, e.g. excavators,
puts ambitious requirements on the driver. Therefore,
the ergonomic aspects of the control environment are
an important selling point. The innovation of new
operating concepts should be supported by an early
design experience. In a student project at Technische
Universität Dresden, a collaboration of students from the
fields of Technical Design, Mechanical Engineering and
Media Computer Science developed an innovative control
concept for mobile excavators. The project was initiated
by an OEM of mobile machinery. Although the actual
project results are confidential, the applied methods and
tools shall be presented and serve as a motivation for
similar projects.

To support the design process, a prototypic control
device was engineered to get a haptic experience. With
the help of novel rapid prototyping technologies, as
3d-printing or lasercutting, complex designs can be
realized quickly and cheaply. Since the required ma-
chines became affordable, public workspaces, so-called
makerspaces spread out more and more. Due to that,
even with a small budget, realistic prototyping is possible.

Another innovation is the availability of easy-to-use,
low-cost microcontrollers. Using different sensors, e.g.
potentiometers, motion concepts of the prototypes can
be tested. Utilizing functional prototypes during an early
design phase, facilitates more profound impressions of
the product than using CAD-models or plastic proto-
types. Machine tools and electronics are available in
Makerspaces and easy to apply for students. With an
easy-to-use connection to virtual environments based on
simulation models, the design process can be enhanced
further. With the help of the OpenModelica tool chain, an
FMU-visualization has been developed which allows an
automated generation of appealing 3d environments.

This paper covers the different aspects of developing
functional prototypes with a high level of automation
and tool support. For the presented use-case of the
machine control development, only freely available
software (i.e. open-source Modelica-tool OpenModelica
and the free gaming engine unity), low-price hardware
and cheap prototyping technologies that are becoming
widely accessible, are applied. This paper is meant to be a
motivation for combining physical prototyping and virtual
mockups within the training of engineers. As experience
has shown, the development of functional prototypes
creates a high level of self-motivation and perfectionism
among participants.

In chapter 2, the applied methods of physical rapid pro-
totyping are presented. Chapter 3 discusses the means
of developing interactive Modelica models. Afterwards,
the basic idea behind a generic FMU-visualization is pre-
sented and the tools for visualizing the simulation models
are introduced in chapter 4. The presented approach is
compared to existing visualization workflows. Chapter 5
describes the manufacturing of a control device. Finally,
chapter 6 concludes the paper and gives an outlook on fu-
ture work.

2 Physical Prototype Manufacturing
2.1 Makerspaces for Higher Education
In recent years, affordable technologies for rapid proto-
typing have spread widely. Various libraries and higher
educational institutions like Saxon State and University

DOI
10.3384/ecp17132879

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

879



Library Dresden (slu) offer public access to rapid proto-
typing machines in so called makerspaces. Makerspaces
are collaborative work spaces which provide rapid proto-
typing tools and the knowledge to utilize them. Typically,
projects in the field of model making and electronics
can be realized using the facilities of a makerspace. The
interest in makerspaces emerges and despite the lack
of long-term investigation, the impact on engineering
education has been promising among many universities
(ISA, 2016). Ongoing studies will give an overview of
how the overall impact of academic makerspaces has
to be assessed. At least with regard of the presented
student project, a high level of motivation to realize the
projects and to acquire the necessary knowledge has been
observed.

In order to develop a control device for an excavator,
3D printers and foam cutters have been used to produce
haptic prototypes. The production costs are very low and
therefore are best suited to use them in student projects.
Project participants from the field of technical design de-
veloped design drafts which have been modelled in CAD-
software. The printed 3D prototypes give a spatial im-
pression and provide enough stability to integrate joints
and sensors.

2.2 Application of Sensors and Micro-
controllers

Besides machine tools, makerspaces offer a range of elec-
tronic components and easy-to-use microcontrollers such
as Arduino (Ard). With these low-cost controllers, sen-
sor concepts can be set up easily and data can be pro-
cessed and transferred to a computer. In the presented
project, buttons, rotary and translational potentiometers
have been set up to map the functionalities of a conven-
tional excavator control. The sensors have been attached
in the joints of 3D-printed control devices in order to ac-
cess the control device condition. The Arduino reads the
sensors and transfers the signals to a computer, either via
USB-connection or with an additional Bluetooth module.
The messages can be processed by SerialPortReceive of
the Modelica_DeviceDrivers library. When using the Ar-
duino IDE, users write C-like code, compile and transfer
it directly to the board and are able to monitor serial con-
nection communication. There is a vast amount of doc-
umentation and tutorials available that simplifies micro-
controller programming for students outside this subjects
area. The following Arduino code can be applied to trans-
fer signal data of the Arduino’s analog pin 1 via USB-
connection with a sample time of 0.1 s.
byte buf[2];
unsigned long lastSignal = 0;
unsigned long interval = 100; //ms
int value = 0;

void setup() {
Serial.begin(9600);

}

void loop() {
while(millis() - lastSignal > interval)
{

lastSignal += interval;
value = analogRead(1);
buf[0] = lowByte(value);
buf[1] = highByte(value);
Serial.write(buf,2);

}}

3 Modelling of Interactive Simulation
Environments

3.1 Model Interaction
The use-case of models involving external inputs dur-
ing runtime became much more accessible by Mod-
elica_DeviceDrivers library (M_DD) (Bellmann, 2009).
The library interfaces various input devices and commu-
nication protocols. Hence, Modelica models can be en-
hanced with direct user-inputs or connected to other pro-
cesses during runtime. A realtime synchronization is pro-
vided as well. For the presented demonstrator, the serial
port implementation was utilized in order to communicate
with an Arduino microcontroller. M_DD supports packing
and unpacking of byte-messages which allows to access
data e.g. sensor signals via a serial port connection. Open-
Modelica supports serial communication and packaging
both in simulation mode and in FMUs. Figure 1 displays
the graphical model view of an excavator model, that is
controlled via serial communication. The message proto-
col is modelled with unpackInt-models, that split incom-
ing messages into a sequence of integer variables. These
integer variables are converted to real variables and condi-
tioned to fit the excavator interface. The excavator model
has been taken from a Modelica-library by the Chair of
Construction Machines, TU Dresden.

Figure 1. Model of an excavator and a serial port interface using
Modelica_DeviceDrivers library

Interactive FMU-Based Visualization for an Early Design Experience

880 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132879



The following listing shows the parametrization of a
model to read a two-byte message sent by an Arduino,
whereas the parameters baud, sampleTime userBufferSize
and Serial_Port have to be adapted to the sending con-
troller. The width parameter of the UnpackUnsignedInte-
ger model has to be set to 16 bit in order to deserialize the
two byte value, sent from the microcontroller.
model arduino
Modelica_DeviceDrivers.Blocks.Communication
.SerialPortReceive
arduinoRead(
baud=Modelica_DeviceDrivers.Utilities
.Types.SerialBaudRate.B9600,
parity=0,
enableExternalTrigger=false,
startTime=0.0,
autoBufferSize=false,
userBufferSize=2,
sampleTime=0.1,
Serial_Port="COM5");

Modelica_DeviceDrivers.Blocks.Packaging
.SerialPackager.UnpackUnsignedInteger
unpackInt(
bitOffset=0,
width=16,
nu=1);
equation

connect(arduinoRead.pkgOut,
unpackInt.pkgIn);

end arduino;

3.2 Realtime Capabilities
Realtime requirements restrict the model to simulating
within a specified interval of time. Hard realtime criteria
demand a deterministic execution time whereas soft
realtime allows the simulation to exceed the time limit
occasionally. In the presented use case, soft realtime
criteria are assessed. Nevertheless, for realtime appli-
cation, it is favourable to reduce the simulation time.
Modelica compilers allow different kinds of performance
optimization for simulations. The time integration method
has a big influence on the execution time, depending on
the number of iterations and step sizes. In most realtime
applications, explicit, fixed step methods are preferable.
The lack of stability and the necessity of small step sizes
lead to the development of more sophisticated methods
e.g. inline integration (Elmqvist et al., 1995). Besides
that, the evaluation of parameters is an effective option to
increase simulation speed. There are various optimization
techniques to improve calculation of algebraic loops,
e.g. structural methods like tearing (Elmqvist and Otter,
1994) or reshuffling (Waurich et al., 2014). Calculations
of jacobi matrices can perform differently dependenig
on whether numerical, symbolical or colored jacobians
are used. Automatic parallelization is also a feature to
speed up simulation. Of course, the operating system,
the hardware and the C/C++ compiler influence the
simulation time as well.

The excavator model consists of a multi body system
and some simple hydraulic components (cylinders, valves,
flow sources). In most cases, the BLT-matrix of a me-
chanical model is dominated by a linear system of equa-
tions. Hence, parallelization of BLT-blocks will not im-
prove the simulation speed. The present model benefits
mostly from the evaluation of parameters. The dominat-
ing system of equations with 437 equations including 9
tearing variables is reduced to a system with 379 equa-
tions including 7 tearing variables. The amount of single
equations reduces from 1208 to 1162. This results in a
simulation speed-up of 1.33. This is sufficient to run the
simulation without exceeding the realtime limits on a Win-
dows 7 desktop computer with i7-3930K processor. The
FMU was compiled using OpenModelica and gcc 5.3.0 as
FMU 2.0 model exchange.

4 A Generic Visualization of FMUs
4.1 The Functional Mock-Up Unit
In order to exchange simulation models and to use them
across various software, the Functional Mock-Up Inter-
face was developed (Blochwitz et al., 2012). The Model-
ica language and its tools are highly involved in the devel-
opment and application of FMI. The FMI-standard fea-
tures two variants, i.e. model-exchange without internal
time integration and co-simulation that includes a time in-
tegration solver. The black-box models that provide the
FMI-API are called Functional Mock-Up Units and con-
tain the functional behaviour of a simulation model that
can be accessed via interface variables. The model vari-
ables are listed in the modelDescription.xml. The
connections and relations of these model variables are hid-
den from the user since FMUs are compiled as a shared
library. This is very useful since it protects intellectual
property but it is cumbersome if information of the model
structure is of interest. Hence, a generic visualization of
FMUs is not possible in general.

4.2 Existing Approaches to Visualize Multi-
body Models

Commercial Modelica-tools offer built-in visualization
features for multibody systems based on the Mod-
elica.Mechanics.MultiBody.Visualization.Advanced
models. Visualization comprises both subsequent and
concurrent visualization of simulation. This visualization
is possible since the tools have full access to the model
information and the variables that are used to visualize
the shapes. Another approach would be to add dedicated
animation objects to the Modelica model and let them
communicate with an external visualization software, e.g.
in the commercial DLR Visualization library (Hellerer
et al., 2014). Also the Modelica3D implementation by
Höger relied on Client/Server communication (Hoeger
et al., 2012). Yamaura et al. (Yamaura et al., 2016) de-
scribed a comprehensive framework of different tools that
exchange model variables via UDP communication with

Session 11C: Mechanical Systems, Robotics & VR

DOI
10.3384/ecp17132879

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

881



a corresponding Unity model. This approach combines
the physical model capabilities of engineering tools like
Simulink and Dymola with the highly developed gaming
engine Unity which offers much more visualization
and graphical modeling features than any simulation
software. Another promising implementation for discrete
time simulations was presented by (Bijl and Boer, 2011)
, that is designed on a database which feeds the 3D
visualization. The use of appealing 3D visualization and
the potential of 3D game engines is described as well.
An entirely different concept was presented in (Elmqvist
et al., 2015) in which even the modeling is performed
in a 3D visualization environment that provides direct
feedback on the model structure of a multibody system.
This visualization uses the web interface of the simulation
tool Dymola.

Since there was no free Modelica tool that features
visualization in an integrated manner, the open-source
Modelica Compiler OpenModelica and its graphical ed-
itor OMEdit have been enhanced to visualize results of
simulations. Therefore, the OpenModelica Compiler has
to extract all necessary information about the visualiza-
tion shapes from its internal model representation. Hence,
the animation of Modelica.Mechanics.MultiBody models
can be provided without adding dedicated visualization
objects to the model.
Instead of implementing a new OpenModelica-specific
API to transfer visualization variables between simulation
and animation-software, the authors decided to choose
an already existing API, i.e. the FMI. By means of a
visualization scene description file that is generated by
the OpenModelica Compiler, the visualization software in
OMEdit can access relevant variables and maps them to
the corresponding animation shape properties. In the fol-
lowing chapters, the details of FMU-based visualization
are presented.

4.3 A Specification of Visualization
As described in the previous chapter, OpenModelica
1.11 is able to create a scene description XML-
file that contains the information about the Model-
ica.Mechanics.MultiBody.Visualizers.Advanced.Shape
objects within a model. The shape model contains the
basic visualization information like position, orientation,
scale and color. This approach was already mentioned in
(Waurich et al., 2016) and a proof of concept implemen-
tation was presented. The scene description XML-file
simply lists all instances of the Shape model and assigns
values to their parameters. The following exemplary
snippet of a scene description XML-file contains in-
formation about the model "shape1" which is of type
"cylinder". The position vector r is defined by constant
expressions and lies in the root "{0,0,0}" whereas the
length attribute depends on the component reference
"shape1.length".

<visualization>

<shape>
<ident>shape1</ident>
<type>cylinder</type>
<r><exp>0.0</exp>

<exp>0.0</exp>
<exp>0.0</exp>

</r>
<length>

<cref>shape1.length</cref>
</length>

</shape>
</visualization>

The shape parameters are either defined by an <exp>
tag which refers to a constant expression of type real or
to a <cref> tag, which stands for a reference given
by a string-type. <cref> elements have to be updated
during runtime. Shapes can be either geometric prim-
itives or CAD-files, like .stl or .dxf that are referenced
by their absolute path names in the scene description
file. Besides the shape models, there are more visu-
alization models that could be defined, e.g. Surface
or PipeWithScalarField, but the current imple-
mentation covers shape only. A XML Schema Defini-
tion is available at https://github.com/vwaurich/
visxml

4.4 The Visualization Architecture
No matter which frontend is used to display the 3D scene,
the mechanism to animate the shapes is identical as de-
picted in Figure 2. The visualization backend needs an
FMU and a corresponding scene-description file, both
generated by the OpenModelica Compiler. It has to be
ensured, that all variables which are used to visualize the
scene, are accessible in the FMU. This means that these
variables must be retrievable via fmiGetReal API. There-
fore, OpenModelica changes protected variables to public
if needed.

Figure 2. Overview of FMU-based visualization both with unity
and OMEdit frontend.

After the selection of an FMU, the visualization back-
end instantiates all shapes listed in the scene description
file. These can be either geometric primitives such as
cubes or spheres, or imported CAD-files. Constant shape
properties can be set directly during initialization of
shapes. In constrast, variable properties cannot be set
before the solution of the inital system of the FMU.

Unpacking, loading, instantiation, initialization and
simulation of the FMU is performed by the FMILibary

Interactive FMU-Based Visualization for an Early Design Experience

882 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132879



(FMI). For the Model Exchange FMUs, a simple Explicit
Euler solver with a default step size of 1ms is used. The
simulation is synchronized with realtime by the visualizer
backend itself. Hence, no synchronization on the model
side is necessary (e.g. from Modelica_DeviceDrivers
Blocks.OperatingSystem.SynchronizedRealtime).

Compared to other visualization approaches, the
generic FMU visualization has the following advantages:

• A specification of the visualization objects allows
different tools to create the same scene automatically.

• No model modifications have to be applied in order
to generate a visualization. No additional dependen-
cies have to be included. No additional equations are
added to the existing multi-body model.

• It is easy for simulation tools to generate scene de-
scription files. Based on this visualization formal-
ism, the visualization is independent of the simula-
tion software and does not rely on vendor specific
interfaces.

• It enables automatic integration of physical simu-
lation in graphical modelling software (as will be
shown for the gaming engine unity).

• The simulation and variable access is achieved via
shared memory communication and therefore does
not need (but can be extended for) simulation via a
network connection.

• It is helpful to visualize third party FMUs automati-
cally to get an understanding of their behaviour with-
out having access to the model itself.

• It is more convenient to add and edit advanced visu-
alization features in a proper visualization tool and
not in the simulation model by a Modelica-Editor.

4.5 OMEdit FMU-Visualization
The graphical connection editor OMEdit features basically
textual and graphical modeling views, result plotting and
algorithmic debugging. The lack of 3D animation hin-
dered the use for mechanical applications. The novel im-
plementation of a result-file based and FMU-based visual-
ization helps to get a better understanding of mechanical
systems.

Figure 3 displays the visualization view of OMEdit.
The visualization is implemented using OpenSceneGraph
and features the animation of mat-result files, csv-result
files and FMUs. In each case, a scene description file is
needed, to map the model variables to the shape proper-
ties.

Figure 3. Screenshot of the visualization perspective in OMEdit.

4.6 Unity FMU-Visualization
The implementation in OMEdit based on OpenScene-
Graph is not visually attractive and makes it very
cumbersome to enhance the scene with additional graphi-
cal objects. A gaming engine with graphical editor and
a huge asset store like unity (Uni), would allow an easy
setup of appealing graphical scenes as in Figure 4. Hence,
the mechanism of loading an FMU and a scene descrip-
tion file has been implemented in a unity plugin. The
user simply chooses an FMU via a dialog and the plugin
creates so called GameObjects for the corresponding
shapes. Besides that, an FMU-simulator GameObject
is created, which simulates the FMU and accesses the
necessary variables. This comprises everything to run the
scene either in the unity debugger or from a compiled
unity project.

Figure 4. Unity scene with an FMU-based excavator model that
is controlled by an Arduino board in realtime.

Next to the shape objects and the FMU-simulator, addi-
tional GameObjects can be added in order to create an ade-
quate environment. Accessing the FMU-inputs and FMU-
outputs from the unity model is possible via interface
functions of the FMU-simulator GameObject. Hence, the
FMU-generating simulation tool is only responsible for
the physcial simulation. The graphical modelling can be
performed by a special purpose tool. The FMU-simulator

Session 11C: Mechanical Systems, Robotics & VR

DOI
10.3384/ecp17132879

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

883



plugin supports this separation by generating the basic
mapping between simulation and visualization automati-
cally. The unity user interface with FMU-selection dia-
log and loaded FMU-visualization is depicted in Figure 5.
Since the FMU has to be initialized to calculate the posi-
tion, orientation and color of the bodies, all shapes are still
in the root of the coordinate system.

Figure 5. Unity user interface with loaded FMU. The GameOb-
jects for the shapes and the FMU-Simulator are listed in the hi-
erarchy view, the .dae files are copied to the resources and the
inspector view displays all variables that are updated during run-
time.

When interchanging variables between the unity world
and the Modelica-based FMU, it has to be considered,
that the coordinate systems are different. Modelica uses a
right-handed system whereas unity relies on a left-handed
system. Furthermore, the y-axis should be used as
vertical since unity uses it as vertical by default (which is
essential since available skyboxes display a horizon in the
x-z-plane).

The FMU-simulator plugin automatically converts the
position and orientation of the Modelica-variables to the
left-handed system of the unity variables and switches the
vertical axis if desired. Another issue is the lack of stl-
file support in unity. It needs an stl-importer plugin or
the CAD-files have to be converted to a 3D data format
e.g. COLLADA. File conversion can be done manually or
scripted by tools like blender (Ble).

5 The Development of a Remote Con-
trol Device for an Excavator

The previous chapters depicted the necessary tools to set
up a functional prototype. To try out novel control con-
cepts, physical prototypes have been equipped with sen-
sors to measure the motion of the joints. The signals are
used to control the volume flow in and out of the cylinders.
Hence, the velocity of motion for the boom, the arm and
the shovel are controlled. Even inverse kinematics can be
tried out if the cylinders are controlled to follow cartesian
inputs to set the position of the shovel. Furthermore, as-

sistance systems are experienceable without implementing
them in fully operable systems. This simplifies the eval-
uation of acceptance and ergonomics. Even exceptional
control mechanisms like handheld controllers for remote
control are possible. Figure 6 shows the setup to control a
model in OMEdit via Bluetooth connection, which is han-
dled as an ordinary serial port.

Figure 6. Remote control setup to control an excavator model
in OMEdit via Bluetooth connection. The control device is a
printed box with 3 rotary potentiometers.

The unity editor allows further settings for camera posi-
tion (first or third person view) as well as lighting and ter-
rain modelling. In the unity asset store, various objects to
populate the scene can be downloaded for free or charged.

6 Conclusion and Outlook
This paper comprises a workflow for developing func-
tional prototypes that have been realized within a student
project at TU Dresden. The usage of Makerspace facil-
ities, low-budget electronics and free software together
in an interdisciplinary design project, was a successful
experiment. The motivation of students was huge and
both the familiarisation with novel technologies as well
as its application are valuable experiences. Besides the
individual learning success, the developed prototypes
are highly praised by the project initiator, an OEM of
excavators.

During the project, improvement opportunities have
been revealed. Basically, the development of a virtual
environment which can be controlled with external

Interactive FMU-Based Visualization for an Early Design Experience

884 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132879



hardware in realtime and based on the simulation of a
Modelica model needed improvement. Hence, an auto-
mated approach to setup visualizations of FMU-based
multi-body systems was implemented. The integration via
FMUs in the game engine unity leads to satisfying results.
More importantly, the scene description of FMUs enables
new generic interfaces to visualization tools and their
features. As a future extension, Modelica models could
be extended with contact-force-interfaces or collision
interfaces that could be generated automatically in a unity
project in order to interact with unitys physics engine
and feedback the results to the simulation model. In the
field of mobile machinery, interaction to soil or particle
models in unity would be very useful as well. Since Game
Engines feature comprehensive possibilities to model
environments, experimental grounds can be set up to test
e.g. assistance and automation systems. Through the
network protocol interfaces of M_DD, even web-based
services in mobile machines can be experienceable in
early design stages.

The scene description file is currently an OpenModel-
ica specific feature. Further support of this FMU exten-
sion would leverage the advantage of the unity-plugin and
the development of other FMU-Visualization-Add-Ons in
additional tools. A discussion about adding the scene de-
scription file as an optional extension to the FMI-Standard
would be highly appreciated by the authors.

References
The arduino webpage. www.arduino.cc. Accessed: 2016-

11-18.

The blender webpage. www.blender.org. Accessed: 2016-
12-08.

The fmilibrary webpage. www.jmodelica.org/
FMILibrary. Accessed: 2016-11-21.

The unity3d webpage. www.unity3d.com. Accessed: 2016-
11-18.

The saxon state and university library dresden (slub) webpage.
http://www.slub-dresden.de/en/service/
workplaces-workspace/makerspace/. Accessed:
2016-12-07.

Proceedings of the 1st International Symposium on Aca-
demic Makerspaces ISAM 2016, 2016. URL www.
project-manus.mit.edu/home/conference.

Tobias Bellmann. Interactive simulations and advanced visual-
ization with modelica. In Proceedings 7th Modelica Confer-
ence. LinkÃűping University Electronic Press, 2009.

Jonatan L. Bijl and Csaba A. Boer. Advanced 3d visualization
for simulation using game technology. In Proceedings of the
Winter Simulation Conference, WSC ’11, pages 2815–2826.
Winter Simulation Conference, 2011. URL http://dl.
acm.org/citation.cfm?id=2431518.2431853.

Torsten Blochwitz, Martin Otter, Johan Åkesson, Martin Arnold,
Christoph Clauss, Hilding Elmqvist, Markus Friedrich, An-
dreas Junghanns, Jakob Mauss, Dietmar Neumerkel, Hans
Olsson, and Antoine Viel. Functional mockup interface 2.0:
The standard for tool independent exchange of simulation
models. pages 173–184, 2012. doi:10.3384/ecp12076173.

Hilding Elmqvist and Martin Otter. Methods for tearing sys-
tems of equations in object oriented modeling. In In ESM 94
European Simulation Multiconference, 1994.

Hilding Elmqvist, Martin Otter, and Franşois E. Cellier. In-
line integration: A new mixed symbolicnumeric approach for
solving differential-algebraic equation systems. In Proceed-
ings of the 1995 European Simulation Multiconference, pages
23–34. Society for Computer Simulation International, June
1995.

Hilding Elmqvist, Alexander D. Baldwin, and Simon Dahlberg.
3d schematics of modelica models and gamification. In Pro-
ceedings of the 11th International Modelica Conference, Ver-
sailles, France, September 21-23, 2015, number 118, pages
527–536. Linköping University Electronic Press, Linköpings
universitet, 2015.

Matthias Hellerer, Tobias Bellmann, and Florian Schlegel. The
dlr visualization library - recent development and applica-
tions. In Proceedings of the 10th International Modelica
Conference; March 10-12; 2014; Lund; Sweden, number 96,
pages 899–911. Linköping University Electronic Press;
Linköpings universitet, 2014. doi:10.3384/ecp14096899.

Christoph Hoeger, Alexandra Mehlhase, Christoph Nytsch-
Geusen, Karsten Isakovic, and Rick Kubiak. Modelica3d
- platform independent simulation visualization. In Pro-
ceedings of the 9th International MODELICA Conference;
September 3-5; 2012; Munich; Germany, number 76, pages
485–494. Linköping University Electronic Press; Linköpings
universitet, 2012. doi:10.3384/ecp12076485.

Volker Waurich, Ines Gubsch, Christian Schubert, and Mar-
cus Walther. Reshuffling: A symbolic pre-processing al-
gorithm for improved robustness, performance and paral-
lelization for the simulation of differential algebraic equa-
tions. In Proceedings of the 6th International Work-
shop on Equation-Based Object-Oriented Modeling Lan-
guages and Tools, EOOLT ’14, pages 3–10, New York,
NY, USA, 2014. ACM. ISBN 978-1-4503-2953-8.
doi:10.1145/2666202.2666203. URL http://doi.acm.
org/10.1145/2666202.2666203.

Volker Waurich, Martin Großer, and Sebastian Voigt. Gener-
ische visualisierung von fmu-basierten modellen für die inter-
aktive simulation. In Tagungsband Workshop ASIM STS/G-
MMS 2016, pages 230–236. ASIM STS/GMMS, 2016. ISBN
978-3-901608-48-3.

Masahiro Yamaura, Nikos Arechiga, Shinichi Shiraishi, Scott
Eisele, Joseph Hite, Sandeep Neema, Jason Scott, and
Theodore Bapty. Adas virtual prototyping using modelica
and unity co-simulation via openmeta. In The First Japanese
Modelica Conferences, May 23-24, Tokyo, Japan, number
124, pages 43–49. Linköping University Electronic Press,
Linköpings universitet, 2016.

Session 11C: Mechanical Systems, Robotics & VR

DOI
10.3384/ecp17132879

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

885


