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Abstract
OpenModelica, an open source equation oriented model-
ing environment for steady state and dynamic simulation,
lacks good chemical engineering support. This problem is
addressed by making available in different ways the ther-
modynamic library Chemsep that comes with DWSIM,
an open source sequential modular steady state simulator.
Only slow speeds could be achieved through a Python-C
API based interface connecting OpenModelica with the
thermodynamic library. A socket programming based in-
terface helps achieve faster speeds. Best results have been
achieved by porting the thermodynamic library and the
calculation routines to OpenModelica, due to two reasons:
(1) thermodynamic equations are solved simultaneously
with mass and energy balances (2) overheads in calling
the external routines of DWSIM are eliminated. Perfor-
mances of the above mentioned three approaches have
been validated with steady state and dynamic simulations.
Benzene - toluene separation, methanol - ethanol - wa-
ter distillation, and steam distillation of an n-octane - n-
decane mixture, have been carried out through these sim-
ulations. This work makes available a powerful simulation
platform to the chemical engineering.
Keywords: OpenModelica, DWSIM, Chemsep, thermo-
dynamics, modeling, simulation, chemical engineering,
Python-C API, socket programming, media

Abbreviations
API Application programming interface
csv Comma separated values
dll Dynamic link library
DTL DWSIM thermodynamics library
EOS Equation of state
VLE Vapor liquid equilibrium

1 Introduction
Modelica (Modelica Association, 2000) is a powerful
modelling language and OpenModelica (Fritzson, 2014)
is its open source implementation. In OpenModelica has
an excellent interface to build models and to perform sim-
ulations. As it implements an equation oriented solution
approach, models and solution methods are maintainable
(Piela et al., 1992). Many engineering domains have used
OpenModelica.

Unfortunately, OpenModelica does not have a library
of chemical engineering models and a thermodynamic
database. As a result, it is not yet of much use to the
chemical engineering community. If we can add a CAPE
Open thermodynamic database to OpenModelica, it can
immensely increase the utility for chemical engineers.

DWSIM is a state of the art open source steady state
process simulator (Medeiros, 2015). It comes with two
CAPE Open thermodynamic databases, Chemsep (Kooij-
man and Taylor, 2001) and the native one. In this work,
we describe the different methods to make the DWSIM
chemical engineering library available for OpenModelica.

This paper is organized as following. We explain the
Python-C interfacing approach to call the DWSIM’s ther-
modynamic database from OpenModelica. We then ex-
plain how to instead use socket programming to connect
the two simulators. The final part is devoted to the porting
of thermodynamics in native mode on to OpenModelica.
We conclude with a comparison of the three approaches.

2 Importing the Thermodynamic en-
gine of DWSIM in OpenModelica

As DWSIM is based on sequential modular solution tech-
niques (Westerberg et al., 1979), it is more suitable to
solve analysis type of problems. One will have to resort
to iterations to design systems, which may involve finding
the value of some parameters in the output stream or in
the equipment, or the building block. It is also difficult to
carry out dynamic simulation in DWSIM. DWSIM has a
strong thermodynamic engine. DWSIM also has a stan-
dalone thermodynamic library (DTL) which can be used
externally.

The weakness of DWSIM is the strong point of Open-
Modelica: it is equation oriented and capable of han-
dling unsteady state equations. Similarly, the weakness
of OpenModelica is the strength of DWSIM: thermody-
namic database and routines. As they complement each
other, there is a good case to integrate OpenModelica with
DTL.

2.1 Python-C API approach to Integrate
OpenModelica with DTL

DTL consists of a file with an extension .dll (dynamic
link library) which is written in VB.NET in windows en-
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Figure 1. Structure of Python-C API approach

Figure 2. Structure of Python-C socket approach

vironment. This file is COM (component object model)
enabled, which means that any programming language
which supports COM can import this library and access
the built-in thermodynamic subroutines. OpenModelica is
written in C in Linux environment and it is not straight
forward to call programs written in VB.NET.

We used Python as the glue language to call the COM
enabled objects of DWSIM from C routines of OpenMod-
elica. This was achieved through the package win32com
of Python. This allowed us to access the DTL library
and all the thermodynamic routines available in DWSIM
from OpenModelica. Figure 1 describes the flow of the
approach, which are further described below.

• DTL routines are imported to Python first through a
package named win32com.client. This package al-
lows Python to call routines from a dll file registered
in the windows registry. Once the dll file is dis-
patched through win32com.client, Python has access
to all the COM enabled functions of the dll.

• Now Python functions can send input parameters to
DTL routines, get the required thermodynamic prop-
erties calculated and receive them. As results of cal-
culations are available, these Python functions can be
considered to behave similar to DTL routines.

• These Python functions are now called by C through
Python-C API. In computer programming, an API
(Application Programming Interface) is a set of rou-
tines, protocols, and tools for building software ap-
plications. An API expresses a software component

in terms of its operations, inputs, outputs, and under-
lying types. This API is responsible for converting C
variables to Python and vice versa.

• Finally as OpenModelica is compatible with C, the
inputs are then sent to C functions through Open-
Modelica external C functions, which in turn calls
the Python functions, which in turn calls DTL rou-
tines.

2.2 Client-Server (sockets) approach to inte-
grate OpenModelica with DTL

Client-Server or socket approach (Rhodes and Goerzen,
2010) is another approach through which the integration is
possible. Figure 2 describes the data flow of the approach,
which are further explained below.

• In this approach also, firstly the the DTL routines are
called in Python with the help of win32com.client
package.

• Similar to Python-C approach, functions are written
in Python which calls DTL to calculate various phys-
ical properties.

• Now a Python server which consists of all the above
functions is created. This server waits for a C client
to establish connection, receive inputs from it and
send the calculated values back to the client.

• For every calculation (e.g. vapor pressure, equilib-
rium constant, etc.), a Python server is established.
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Table 1. Thermodynamic routines and the procedures to call
them

Thermodynamic Prop. Thermodynamic Func. Arguments
Vapor Pressure VapPres Comp,T

Enthalpy Ent Comp., T,P
Liquid Density LiqDen Comp,T
Vapor Density VapDen Comp,T

Pres. Temp. Flash PTFlash Comp,Z,T,P,Model
Pres. Volume. Flash PVFlash Comp,Z,V,P,Model

Pres. Enth. Flash PHFlash Comp,Z,H,P,Model
Liquid Viscosity LiqVis Comp,T
Vapor Viscosity VapVis Comp,T
Surface tension SurfTen Comp,T

• Clients are coded in C which establishes connections
with the Python servers and send and receive data
from them.

• Once the connection is established, a Python server
receives the data from C client, contacts DTL, calcu-
lates the required property as asked by the C client
and sends it back to the client.

• Finally, these C clients are called by OpenModelica
external C functions giving the required inputs to the
client which in turn contacts the Python servers for
calculations. The C clients receive calculated values
from Python servers and transfer them to OpenMod-
elica.

2.3 Comparison of the two approaches
In this section, we compare the two approaches presented
above. In both approaches, before any routine in DTL is
called, one has to carry out initialization. This Initialize
routine loads all the compounds and their properties from
the database, which is a time consuming operation. In the
Python-C API approach, this initialization is done every
time a call is made from OpenModelica to DTL. On the
other hand, this has to be done only once in the Client
Server approach. As a result, the latter is far more efficient
than the former.

Whenever an API is used in any program it makes it
slow as there is a lot of conversions involved, such as data
type conversions. As the Python-C API approach is based
on API it is slow.

To verify the speeds of two approaches, we use the
thermodynamic calculations presented next. Table 1 lists
the thermodynamic functions and their arguments that
we have implemented in OpenModelica to receive values
from DTL. These functions can be used directly in any
simulation. When using the socket approach, the Python
server should be up and running during the execution of
the simulation. We now present two case studies that
helped compare the two approaches.

• Steady State Flash Separator
An equimolar mixture of Benzene and Toluene was
flashed in a flash separator. The thermodynamic

package used was Raoult’s law. All the pure com-
ponent and mixture properties were imported from
DTL. To test the capability of the integration meth-
ods, the composition of the resulting vapor stream
was specified, and the temperature at which this com-
position was attained was left unknown. It was ob-
served that the Python-C API approach took 30 sec-
onds to solve the system, whereas the Client-Server
method took less than 1 second to simulate.

• Dynamic Flash
A dynamic flash was simulated with the feed as
equimolar mixture of benzene and toluene. The ther-
modynamic package used was again Raoult’s Law.
It was assumed that the output liquid stream was at
the same composition and temperature, as the holdup
inside the flash separator. Heat supplied to flash sep-
arator was kept constant. The set of equations in-
volved were mass balance, energy balance and equi-
librium equations. The mass and energy balance
were differential equations. It was observed that the
Python-C API approach took 30 minutes to solve,
whereas the Client-Server approach took 4 minutes
to solve the system.

The above two examples and others that we have not re-
ported here show that the Client-Server approach is more
efficient than the Python-C API approach.

3 Development of a native thermody-
namic engine in OpenModelica

A thermodynamic engine consists of the following three
components: Compound database, thermodynamic func-
tions and phase equilibria models. In this section, we de-
scribe how we have developed a native thermodynamic en-
gine in OpenModelica.

3.1 Development of Compound Database
A Compound database is a comprehensive database of
physical and chemical properties of all compounds. It
also includes constants for calculating various temperature
or pressure dependent properties like vapor pressure, en-
thalpy, viscosity, etc.

We first describe the Chemsep (Kooijman and Taylor,
2001) database that we ported to OpenModelica. Chem-
sep is an open source database, written in xml format. It
has over six hundred compounds with a comprehensive
set of thermodynamic properties of each compound. It
also has an extensive database of binary interaction pa-
rameters for thermodynamic packages like NRTL (Renon
and Prausnitz, 1968), Peng Robinson (Peng and Robin-
son, 1976), UNIQUAC, SRK (Soave, 1972), etc. Most
of the thermodynamic properties are calculated by empir-
ical equations that are functions of temperature or pres-
sure. Chemsep database includes the constants which are
used in these equations. Therefore, Chemsep database is
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Table 2. Independent thermodynamic properties and OpenMod-
elica routines to call them.

Thermodynamic Property Calling procedure
Critical Temperature Compound.Tc
Critical Pressure Compound.Pc
Critical Volume Compound.Vc
Boiling point Compound.Tb
Melting point Compound.Tm
Molecular weight Compound.MW
Acentric Factor Compound.AF
Triple Point Compound.TT
Solubility parameter Compound.SP
Dipole moment Compound.DP
Heat of formation Compound.HOF
Absolute enthalpy Compound.ABSENT

a comprehensive database that can be used to built a pow-
erful and robust thermodynamic engine.

We now explain how we ported Chemsep to Open-
Modelica. First, the xml data have to be rewritten in a
form understandable by OpenModelica. Therefore, each
compound (including all its thermodynamic properties) is
replicated as a single class in OpenModelica, as shown
in Figure 3. The properties are given abbreviations (as
shown in Table 2) so that they can be called conveniently.
The conversion from xml to OpenModelica classes is car-
ried out by developing a Python script which automates
this process, thus making it fast and robust.

Now, one can extract any independent property of a
compound by the . (dot) operator, followed by the prop-
erty relevant abbreviation. For example the critical tem-
perature (Tc) of methane can be accessed by Methane.Tc.
Similarly, all properties of any compound can be accessed
in the same way as shown in table 2.

3.2 Development of Thermodynamic Func-
tions

Thermodynamic properties are generally calculated
through empirical equations that include constants, whose
values are provided by the compound database as ex-
plained above, and independent variables, such as tem-
perature, pressure and composition. These properties are
written in the form of functions in OpenModelica. Ar-
guments to these functions are the independent variables
mentioned above, and the coefficients of respective com-
pounds whose properties have to be calculated. These co-
efficients can be accessed by instantiating the base com-
pound class. The functions then return the calculated
property. For example, the vapor pressure of methane
at 300 K can be calculated by first instantiating the base
Methane class (parameter Methane methane) and then
calling Pvap(methane.VP, 300). Where Pvap is a generic
function to calculate the vapor pressure of any compound
at any given temperature. The whole process is shown

Table 3. Dependent thermodynamic properties and OpenMod-
elica functions to call them.

Thermodynamic Property Calling procedure
Liquid density LiqDen(Compound name,temp)
Vapor pressure VP(Compound name,temp)
Heat of Vaporization HOV(Compound name,temp)
Liquid heat capacity LiqCp(Compound name,temp)
Liquid viscosity LiqVis(Compound name,temp)
Vapor viscosity VapVis(Compound name,temp)
Liquid thermal conductivity LiqK(Compound name,temp)
Vapor thermal conductivity VapK(Compound name,temp)

in Figure 4. Similarly, all other thermodynamic proper-
ties can be calculated using their respective functions as
shown in Table 3.

3.3 Development of Phase Equilibria models
Phase equilibria models consist of modelling equations for
Vapor Liquid Equilibrium (VLE) models like Peng Robin-
son, NRTL, UNIQUAC, etc. These models are used to
predict the behavior of various systems.

In a mixture of phases that are in an equilibrium, the
component fugacities are the same in all phases (Smith
et al., 2005), that is :

f L
i = f V

i (1)

where f L
i and f V

i are the liquid and vapor phase fugaci-
ties of the ith component respectively. The fugacity of a
component in a mixture depends on temperature, pressure
and composition. In order to relate f iV with temperature,
pressure and molar fraction, we define the fugacity coeffi-
cient,

Φi =
f V
i

yiP∗ (2)

where Φi is the fugacity coefficient and P∗ is the pressure
of the system, which can be calculated from PVT data,
commonly obtained from an equation of state (EOS). For
a mixture of ideal gases, Φi = 1. The fugacity of compo-
nent i in the liquid phase is related to the composition of
that phase by the activity coefficient γi, which by itself is
related to xi and standard-state fugacity f 0

i by

γi =
f L
i

xi f 0
i

(3)

The standard state fugacity f 0
i is the fugacity of the ith

component at the system temperature, i.e. mixture, and in
an arbitrary pressure and composition. Here, the standard-
state fugacity of each component is considered to be equal
to pure liquid i at the system temperature and pressure.
An Equation of State is used to calculate equilibria. The
fugacity of the ith component in the liquid phase is calcu-
lated by

γi =
f L
i

xiP∗ (4)
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Figure 3. Porting Chemsep database in OpenModelica

Figure 4. Using built in thermodynamic functions (Pvap)
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Figure 5. Porting Chemsep’s binary interaction parameters in
OpenModelica

with the fugacity coefficient Φi calculated by the EOS, just
as it is done for the vapor phase.

We have implemented the following four phase equilib-
ria models: Peng Robinson, SRK, NRTL and UNIQUAC.
Peng Robinson and SRK are the most abundantly used
EOS models, whereas NRTL and UNIQUAC find a wide
variety of applications where activity coefficient models
are required (Medeiros, 2015).

The binary interaction parameters for each of the EOS
and activity coefficient models have been extracted from
Chemsep database where they are stored in a .dat file. The
following procedure is used to port all the binary interac-
tion parameters to OpenModelica.

• First, the dat file is converted to a csv file, which is
easier to process by Python.

• This csv file is then converted to an OpenModelica
function by a Python script which converts the com-
pound and the binary interaction parameters as an ar-
ray.

Figure 5 demonstrates the above process for NRTL activ-
ity coefficient model. This code is automatically generated
by the Python script. Line 6 of this code has been short-
ened for convenience. The actual code has 400 triplets of
real numbers on the right hand side of line 6.

Figure 6 shows the NRTL model. The model acquires
the required binary interaction parameters from the BIP-
NRTL function. The model incorporates the equilibrium
relation described in equation 4. This model can now be
directly extended into any model which requires calcula-
tion of phase equilibrium. All other phase equilibria mod-
els have been modeled similarly.

Figure 6. NRTL model as written in OpenModelica 1.11.0

4 VLE curve (Txy) for a binary sys-
tem through the UNIQUAC model

In this section, we explain the procedure to generate the
VLE curve for a binary system and demonstrate it with
results from an ethanol-water system.

We will first explain the procedure to generate the bub-
ble point curve. Suppose γ1 and γ2 are the activity coef-
ficients, y1 and y2 are vapor phase compositions, x1 and
x2 are liquid phase compositions, and Pvap1, Pvap2 are
corresponding vapor pressures, of components 1 and 2,
respectively. Then, the following equations are used to
generate the bubble point curve.

y1.P = γ1.x1.Pvap1 (5)
y2.P = γ2.x2.Pvap2 (6)

This is known as the modified Raoult’s law.
Adding the above two equations and equating the vapor

phase mole fractions to one (y1 + y2 = 1), we get

P = γ2.x2.Pvap2 + γ1.x1.Pvap1 (7)

Here γ1 and γ2 are complex nonlinear functions of temper-
ature and liquid compositions and Pvap1 and Pvap2 are
functions of temperature.

The pressure is kept constant at 1 atm. The value of
x1 is varied from 0 to 1 with an interval of 0.1 and for
each value of x1, the corresponding value of temperature
is calculated by equation 7. This is known as the bubble
point.

Now we explain how the dew point curve is generated.
We once again use the modified Raoult’s law for this pur-
pose. Manipulating the equations 5 and 6 and putting x1 +
x2 = 1 we get

y1

γ1.Pvap1
+

y2

γ2.Pvap2
= 1 (8)

The pressure is kept constant at 1 atm. The value of
y1 is varied from 0 to 1 with an interval of 0.1 and for
each value of y1 the corresponding value of temperature if
calculated by equation 8.

Figure 7 describes the implementation of the bubble
point model in OpenModelica. The dew point model have
also has been modeled similarly. As shown all the three
parts of the thermodynamic engine, namely, compound
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Figure 7. Bubble point model as written in OpenModelica
1.11.0

(a) Results from OpenModelica 1.11.0

(b) Results from Aspen Plus 8.1

Figure 8. Comparison of T-xy curve for ethanol water system
using UNIQUAC VLE model

database, thermodynamic functions and phase equilibria
models, have been incorporated in the model.

Using the above procedure, we have calculated the bub-
ble point curve and the dew point curve for the ethanol(1)-
water(2) system, and presented them in Figure 8(a). One
can see it to be identical to the figure generated by Aspen
Plus (Aspentech, 2017), presented in Figure 8(b).

Reliable azeotropic data source by American Chemi-
cal Society (Gmehling et al., 1995) says that for ethanol-
water system, at 1 atm, the azeotropic composition and
temperatures are 0.96 mole fraction ethanol and 351.4 K,
respectively. These values are also in agreement with the
OpenModelica results.

The same simulation when carried out with the im-
ported DWSIM’s thermodynamic engine in OpenModel-
ica resulted in an execution time of about 20 minutes,
whereas for the built in thermodynamic engine, the exe-

cution time was 0.58s.

5 Steady State Flash
Now that thermodynamics is available in OpenModelica,
we simulate a steady state flash of a methanol, ethanol,
water system, using NRTL. To check the design efficiency
of the developed thermodynamic engine in OpenModel-
ica, the output composition of the vapor product is spec-
ified, while the temperature at which this desired compo-
sition of vapor is attained is left unspecified. Thus, it is a
design problem. To carry out this simulation in DWSIM,
we have to use the adjust operation that uses a trial and
error method.

We now explain the problem we propose to solve. The
flow rate and the composition of the feed is specified.
Pressure is kept constant at 1 atm. It is desired to calculate
all other variables for three different values of methanol
mole fraction, x1. In other words, vapor compositions of
ethanol and water, temperature of all streams and all flow
rates need to be calculated. The schematic of the problem
statement is presented in Figure 9.

The input stream enters at 1 atm and its temperature is
to be determined according to the specified input compo-
sition. The simulation is run for three different desired
vapor compositions of methanol. The minimum and max-
imum temperatures were taken to be boiling points of pure
methanol and water and the initial guess for temperature
is taken to be average of these two boiling points. The
following equations describe the model.

Mass balance:

ziF = xiL+ yiV (9)
F = L+V (10)

Equilibrium equation:

yi = Kixi (11)

Summation Equation:

2

∑
i=1

yi = 1 (12)

Here, F, L, V are the feed, liquid, and vapor flow rates,
respectively, in kmol/hr and zi,xi,yi are the feed, liquid,
and vapor compositions respectively. Ki is the equilibrium
constant. UNIQUAC activity coefficient model is used as
the phase equilibria model.

Figure 10 depicts the example as developed in Open-
Modelica. The type compound in the fifth line is a general
class used to represent the compound class.

Results of these calculations have been presented in Ta-
ble 4. One can see that these results are consistent with
the general requirement that higher the mole fraction of
the least volatile component, lower the temperature. All
calculations got completed in OpenModelica in less than
a second.
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Figure 9. Model with problem statement for steady state flash of Methanol-ethanol-water.

Figure 10. Flash model as written in OpenModelica 1.11.0

Same calculations are repeated in DWSIM using the ad-
just function, by trial and error, and the results are reported
in the same Table. One can see the results to be compara-
ble. It took 15 to 20 seconds to do each of these calcula-
tions in DWSIM, however.

6 Semi-Batch Steam Distillation of a
Binary Organic Mixture

We now illustrate the ease with which dynamic simula-
tion can be carried out in OpenModelica, using the semi-
batch steam distillation of a binary mixture. We present
the model first and then an example.

Table 4. Results of simulation in OpenModelica using the built-
in thermodynamics and in DWSIM

OpenModelica 1.11.0
Desired Vapor Comp.(Methanol) Temperature Liquid Comp.

0.35 351.21 0.1985
0.38 350.28 0.2354

0.425 349.24 0.274
DWSIM 3.4

0.35 351.26 0.199
0.38 350.211 0.234

0.425 349.12 0.279

6.1 Model of the process
This illustrative example involves semi-batch steam dis-
tillation of a binary mixture (n-octane and n-decane). A
schematic plot of the steam distillation apparatus is shown
in Figure 11. The organic mixture is charged into the still
initially, and then steam is bubbled through continuously
until the desired degree of separation has been reached.
There are two different periods in the operation of the still:
the heating period, until the boiling point temperature of
the organic mixture is reached, and the distillation period.
A brief description of the mathematical models for the two
periods follows (Shacham et al., 2012).

We present the model for the heating period first. A
simple mass balance on the water phase yields

dmw

dt
=Ws (13)

where Ws is the steam flow rate in kmol/s and mw is the
mass of water in the still in kmol. It is assumed that all
the steam condenses in the distillation vessel and that the
organic phase masses remain constant during the heating
period.
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Figure 11. Schematic of steam distillation apparatus (Shacham
et al., 2012).

An energy balance on the still provides the equation for
the change of the temperature T in ◦C

dT
dt

=
Ws(Hs −Hlw)−Q

mwcpLw +m(x1cpL1 + x2cpL2)
(14)

where Hs is the enthalpy of the steam in J/kmol, Hlw is
the enthalpy of liquid water in J/kmol, Q is the rate of
heat transfer to the surroundings in J/sec, cpLw is the molar
specific heat of the water in J/kmol-K, m is the mass of the
organic phase in the still in kmol, x1 and x2 are the mole
fractions, and cpL1 and cpL2 are the molar specific heats of
organic compounds No. 1 and 2, respectively, in J/kmol-
K. The heat transfer rate to the surroundings is calculated
from the following equation.

Q =UA(T −Ta) (15)

where UA is the product of the overall heat transfer co-
efficient U and the contact area A with the surroundings
in J/s-K, Ta is the ambient temperature in K, and T is the
temperature of the liquid in the still in K.

Assuming ideal liquid behavior, Raoult’s law can be
used to calculate the vapor mole fraction of the compo-
nents in the organic phase

y1 =
x1P1

P
y2 =

x2P2

P
(16)

where P is the total pressure in Pa and P1 and P2 are the va-
por pressures of the organic compounds in Pa. The mole
fraction of the water which is immiscible in the organic
phase is given by yW = PW/P. y1 and y2 are the vapor
phase mole fraction of n-octane and n-decane respectively.
The heating period continues until the sum of vapor pres-
sures of the organic compounds and the water is equal to
the total pressure. Thus, the bubble point equation to be
satisfied can be expressed as

f (T ) = 1− (y1 + y2 + yw) = 0 (17)

We now present the model for the distillation period.
During the distillation period, there is output of water va-
por from the still.

dmw

dt
=Ws −V yw (18)

where V is the outlet vapor flow rate. Material balances
on the two organic compounds yield two additional differ-
ential equations

d(mx1)

dt
=−V y1

d(mx2)

dt
=−V y2 (19)

The organic mass in the still at any time is given by:
m = mx1 +mx2. The temperature in the still changes in a
manner so that the bubble point equation is satisfied. The
energy balance at a particular temperature yields the mo-
mentary vapor flow rate

V =
Ws(HS −HLW )−Q

Hv− [ywhlw +(y1hL1 + y2hL2)]
(20)

where HV is the molar enthalpy of the vapor phase;
hLw,hL1, and hL2 are the liquid phase molar enthalpies
of water, n-octane and n-decane, respectively. Material
balances on the water and organic phases in the still can
provide the amount and the mole fractions of the various
components in the distillate.

6.2 Example: n-octane, n-decane distillation
Semibatch steam distillation of a mixture containing n-
octane (compound 1) and n-decane (compound 2) is to
be processed. Initially M = 0.015 kmol of organics with
composition x1 = 0.725 is charged into the still. The ini-
tial temperature in the still is T0 = 25 ◦C. Starting at time
t = 0, steam at a temperature Tsteam = 99.2 ◦C is bub-
bled continuously through the organic phase at the rate of
MS = 3.85e-5 kmol/s. All the steam is assumed to con-
dense during the heating period. The ambient temperature
is TE = 25 ◦C and the heat transfer coefficient between the
still and the surrounding is UA = 1.05 J/s-K. The ambient
pressure is P = 9.839E+04 Pa.

Assumptions: 1) Ideal behavior of all components in
pure state or mixture; 2) complete immiscibility of the wa-
ter and the organic phases; 3) ideal mixing in the boiler;
and 4) equilibrium between the organic vapor and its liq-
uid at all times. The standard state for enthalpy calcula-
tions pure liquids at 0 ◦C and 1 atm. can be used.

We have to Calculate and plot the still temperature (T),
component mole fractions inside the still (x1, x2, y1, and
y2), and the component mole fractions in the distillate
(x1dist and x2dist) using the data and the initial values pro-
vided.

We have to determine the lowest n-octane mole fraction
in the feed that can yield a distillate concentration of 90%
of n-octane. Compute the percent recovery of n-octane
in the distillate as function of its concentration in the feed.
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(a) Temperature profiles generated in OpenModelica 1.11.0

(b) Temperature profiles as reported in literature (Shacham et al., 2012)

(c) Profiles of vapor and liquid compositions, as generated in OpenMod-
elica 1.11.0

(d) Profiles of vapor and liquid compositions, as reported in the literature
(Shacham et al., 2012)

Figure 12. Comparison of temperature and composition change
during semi-batch steam distillation

Vary the feed concentration in the range where the require-
ment for the n-octane concentration in the distillate is at-
tainable.

Plots in Figure 12 shows that the results of OpenModel-
ica are in agreement with that of (Shacham et al., 2012). It
can be observed that the temperature increases during the
heating period and then stays constant during the distilla-
tion period when the Bubble point is attained. The liquid
phase compositions is constant during the heating period
as there is no vapor formation.

7 Conclusion and Future Work
In this paper, we have implemented and compared three
different ways of making available thermodynamics in
OpenModelica. Each of these approaches has been illus-
trated with simulations of one or more chemical processes.
We have found the native port to be the most efficient.

We have compared the results of OpenModelica with
those from DWSIM, Aspen Plus, and published literature,
and they match quite well in all calculations.

As now OpenModelica has its own thermodynamic en-
gine, a library of steady state chemical process models
could be modeled. It may also be possible to build a li-
brary of dynamic chemical process models in OpenMod-
elica, to carry out general purpose dynamic simulation.

We hope to explore the possibility of enhancing
OMEDIT’s (Asgharand et al., 2011) features so that the
GUI shall resemble that of established simulators, such as
Aspen Plus or DWSIM, for chemical process simulation.

We propose to check the correctness of thermodynamic
calculations by solving a large number of already solved
flowsheets. Sources for these will include examples from
books, journals, reports and sample problems from other
process simulators. We hope to present these flowsheets
in a way similar to what we have done for DWSIM
(DWSIM-Team-FOSSEE-Project, 2017). Usefulness of
such an initiative has been articulated in a similar context
(Braatz, 2014).

A difficult task we face is with respect to thermodynam-
ics in general and the thermodynamic database, in partic-
ular. This facility has to be strengthened by adding in-
formation on more chemicals and more thermodynamic
calculations. We invite experts in this important area to
contribute and to make OpenModelica a much better open
source process simulator.
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