May 15–17, 2017 in Prague, Czech Republic
[Proceedings]
[Sessions]
[Authors]
[Schedule]
[Further material]
Title: Engine thermal shock testing prediction through coolant and lubricant cycling in Dymola
Authors: Alessandro Picarelli, Eduardo Galindo and Rodolfo Soler
Abstract:In this work, an acausal multi-domain physical system model is used to study the interaction between an internal combustion engine operation and a range of cooling and lubrication system thermal cycling scenarios. Although the model can be used for modelling a wide range of scenarios, this paper concentrates on the application of engine thermal shock test dynamics prediction through coolant and lubricant cycling. An internal combustion engine is load-controlled on a dynamometer. Coolant and lubricant temperature transients are imposed on the engine system. Using freely available and commercial Modelica Libraries within the Dymola environment, the systems integration of the coolant rigs, lubricant rigs and engine is achieved. The rigs and the controllers are validated against test data to create predictive models of such systems for test virtualisation. This allows the user to develop and define control strategies for the tests from desktop, prior to engaging in laboratory tests.
Links: Full paper
Title: Model Reduction Techniques Applied to a Physical Vehicle Model for HiL Testing
Authors: Romain Gillot, Alessandro Picarelli, Mike Dempsey and Stephen Gallagher
Abstract:To build a full vehicle model entirely based on physical
equations is a challenge. To have this model to run fast
enough so that it is suitable for Hardware-in-the-Loop testing
is even more challenging. The level of detail in the physical
representation of the vehicle can always be increased at the
cost of simulation time. Even if the performance of the
hardware is constantly improving, we still have to
compromise.
As part of the MORSE (MOdel based Real-time Systems
Engineering) project, model reduction techniques are
developed and applied to a vehicle model. The results in
terms of accuracy and simulation speed are then investigated.
Links: Full paper
Title: Investigating the Effect of a Sonic Restrictor in the Intake of an Engine
Authors: Maura Gallarotti, Alessandro Picarelli and Mike Dempsey
Abstract:The air induction system is one of the engine subsystems that most influences fuel efficiency and power generation, especially in restricted race engine applications.
In this paper, the quasi-1D model of a sonic restrictor is presented, together with its integration in an engine model, in order to investigate the behaviour of the engine power and torque when the choked condition is reached.
The study shows how power and torque curves are affected when a sonic restrictor is installed within the intake system and outlines the need of detailed simulations in a restricted engine development process, to avoid steep engine power reductions at high speeds.
Links: Full paper